

Tycho Litepaper
Broxus Team

v0.1.1

Content
Content 2

Abbreviations and Definitions 3

Introduction 4

The Overview of DAG-based Protocols 4

IOTA, Avalanche, Hashgraph 4

PHANTOM, GHOSTDAG and BlockDAG 5

Mysticeti Leaderless BFT with DAG-based Proposer Graph) 6

Execution-layer DAGs and Non-ledger DAG Usage 6

The Overview of Smart-Contract Virtual Machines 6

DAG Consensus & Collator 9

Tychoʼs 2Phase-Commit 9

Mempool 9

Collator 12

Work Units 15

Virtual Machine & Smart Contracts 17

Data Storage 20

Serialization & Low-level Storage Optimization 20

State Management and Merkle Updates 21

State Node Adapter 30

BlockStrider 30

Scalability & Interoperability 33

How Tycho Achieves Better Scalability 33

Queue State Separation from Shard State 33

High Performance Message Grouping 33

Minimized Data to Validate 34

Tycho-Based Protocols and TON 34

Network 35

Benchmarking 36

Comparison of DAG Protocols 37

Conclusion 39

References 40

Abbreviations and Definitions

Key Abbreviations

2PC: 2Phase-Commit.

aBFT: Asynchronous Byzantine Fault
Tolerance.

ADNL Abstract Data Network Layer.

AVM Algorand Virtual Machine.

BFT Byzantine Fault Tolerant.

DHT Distributed Hash Table.

DLT Distributed Ledger Technology.

EVM Ethereum Virtual Machine.

FPC Fast Probabilistic Consensus.

L2 Layer-2

LT Logical Time.

DAG Directed Acyclic Graph. A graph
structure with directed edges and no
cycles.

PoS Proof of Stake.

PoW Proof of Work.

TEAL Transaction Execution Approval
Language.

QUIC Quick UDP Internet Connection.

RLDP Reliable Large Data Protocol.

RPC Remote Procedure Call.

SVM Solana Virtual Machine.

TON The Open Network.

TPS Transactions Per Second.

TVM TON Virtual Machine.

WU Work Units.

VM Virtual Machine. A computation
engine that executes smart contract
code in a sandboxed environment.

Key Definitions
Anchor: A special point in the DAG mempool that serves as a committed reference
after three consecutive points form an "anchor pattern." Anchors belong to the global
DAG and enable deterministic ordering of messages.

Bag of Cells: A collection (set) of cells.

Cell: The fundamental data structure in Tycho.

Continuation: an execution token in TVM that enables control flow graphs, exception
handling, and the ability to stop and resume smart contracts.

External Message: Messages originating from outside the blockchain network (e.g.,
user transactions) that enter through the mempool.

Equivocation: The creation of alternative points at the same round by the same
producer, which is detected and treated as a protocol violation. A “fork eventˮ is a
close equivalent definition.

Internal Message: Messages generated by smart contract execution that are
processed within the blockchain network.

Mempool: The DAG-based first stage of Tycho's 2PC consensus that provides
collating nodes with a common set of external messages, acting as a persistent ring
buffer.

Point: The basic object of the mempool that carries external messages and metadata,
essentially a vertex in a node's local DAG view.

Work Units WU A sophisticated measurement system that evaluates block release
time by considering message processing, dictionary operations, VM gas consumption,
account updates, and outgoing messages to synchronize collators with the mempool.

Introduction

Tycho is a novel blockchain protocol which extends core features of The Open
Network TON by leveraging Directed Acyclic Graph DAG approach when receiving,
processing and confirming messages inside TON. The concept of a DAG is a
well-established construct in graph theory, defined as a directed graph with no cycles
123. DAGs are widely applied in computer science domains such as scheduling,
data flow analysis, and dependency resolution. In recent years, DAGs have also been
adopted in the context of blockchain and distributed ledger technology DLT.

Notable examples of the recent innovations in DAG-based designs include
Bullshark[4, MYSTICETI5, and Narwhal-Tusk[6. They introduce efficient consensus
mechanisms suitable for high-throughput and low-latency environments.

Sequential blockchains, such as Bitcoin and Ethereum, rely on a linear chain of blocks
that imposes fundamental constraints on transaction throughput and confirmation
latency. These limitations arise from the requirement that blocks be appended one at a
time, with strict ordering enforced by consensus mechanisms like proof-of-work
PoW or proof-of-stake PoS and its derivations. As transaction volumes grow, these
linear architectures experience performance bottlenecks and increased confirmation
delays.

Unlike global sequential chains, modern DAG-based protocols enable concurrent
transaction validation and partial or asynchronous ordering, thereby enhancing
throughput and reducing latency. Bullshark[4, MYSTICETI5, and Narwhal-Tusk[6
etc. achieved high-performance consensus while maintaining robustness against
faults and asynchrony. The adoption of DAG in smart contract platforms like Sui and
Aptos underscores the shift toward scalable, production-grade distributed ledgers.
With Tycho, TON protocol adopts DAG for the purpose of its own original
smart-contract virtual machine.

However, the design and analysis of DAG-based systems also introduce new
challenges. These include transaction ordering ambiguity, consensus safety under
concurrency, finality guarantees, and complex network behavior under adversarial
conditions. Additionally, the lack of standardized evaluation frameworks complicates
the comparison of protocol properties across different implementations.

The implemented Tycho DAG mainly follows the principle “the code is specificationˮ
and is freely available on GitHub 8 for more elaborate analysis.

The Overview of DAG-based Protocols

In this section, we describe the architectural designs of the most prominent
DAG-based systems, focusing on their graph structure, consensus mechanism, and
execution model.

IOTA, Avalanche, Hashgraph

IOTA is a DAG-based distributed ledger that replaces blocks with a transaction graph
called the Tangle, where each transaction approves two others[9, enabling feeless,
lightweight microtransactions. Originally dependent on a centralized Coordinator to
prevent double-spends, IOTA's Coordicide redesign introduced a leaderless
consensus via Fast Probabilistic Consensus FPC and a reputation metric called
Mana, which replaced fees but relies on strong assumptions about Sybil resistance
and user behavior[10]. While the Tangle supports parallelism, its lack of total ordering
complicates smart contracts and yields only probabilistic finality, and FPC's
robustness under network delays remains uncertain. Despite ecosystem growth[11],
IOTA has faced criticism over security, liveness, and resilience in adversarial settings.

Avalanche introduces a family of consensus protocols based on repeated subsampled
voting over a DAG of transactions[12], where nodes query random peers to determine
preferences and gradually converge toward consensus. This approach enables high
throughput and fast confirmations under favorable conditions, but its probabilistic
safety means consensus is not guaranteed under asynchrony or coordinated
attacks[13]. The protocol requires careful parameter tuning to balance liveness and
safety, and while Avalanche's multi-chain architecture - with the XChain for assets,
CChain for smart contracts (using the linearized Snowman protocol), and PChain for
validator coordination - offers flexibility, it also increases complexity and raises
questions about cross-chain interoperability and consistency[14].

Hashgraph is a DAG-based consensus algorithm that uses gossip and virtual voting to
achieve asynchronous Byzantine fault tolerance (aBFT) without blocks or mining[15].
Nodes create events referencing two parents - one local and one received - forming a
DAG that preserves causality, and consensus is reached via deterministic virtual voting
without actual message exchange[16]. While the protocol guarantees finality under full
asynchrony with less than one-third malicious nodes, it relies on a permissioned
governance model through a fixed set of council members, limiting decentralization.
Additionally, it assumes all nodes have full visibility of the DAG, which may not hold
under high churn or adversarial conditions, though it offers a theoretically robust
consensus layer with deterministic ordering and low latency.

PHANTOM, GHOSTDAG and BlockDAG

PHANTOM is a DAG-based consensus protocol that extends Nakamoto's
longest-chain rule by defining a total order over a blockDAG using k-cluster (kk). It
defines a set of blocks connected to all but at most k others which are topologically
sorted to form the ledger[17].

While finding a k-cluster is NP-hard problem, PHANTOM employs the GHOSTDAG
heuristic, which selects a "blue" set of blocks based on connectivity to represent the
honest chain, enabling higher throughput through parallelism. However, PHANTOM
and GHOSTDAG are vulnerable to incentive attacks if miners deviate from prescribed
transaction selection, risking reward manipulation and reduced decentralization for the
whole network[18]. Building on GHOSTDAG, the BlockDAG platform integrates UTXO
and account-based models, allowing smart contracts and traditional transactions to
coexist with a bridging mechanism between them[19]. While this hybrid architecture
improves flexibility and throughput, it introduces complexity in maintaining consistency
and requires further analysis to ensure security, double-spend resistance, and
performance under adversarial conditions.

Mysticeti - Leaderless BFT with a DAG

Mysticeti is a DAG-based consensus protocol that achieves deterministic finality in
partially synchronous networks without a fixed leader[5. It allows all nodes to propose
blocks concurrently by organizing proposals into a DAG, where each proposal links to
earlier ones, forming a proposer graph. Consensus is reached by identifying
"committable" proposals through quorum intersection and acknowledgment
accumulation, enabling agreement without leader rotation or slashing. The protocol
guarantees safety and liveness under the stake-weighted BFT assumption and does
not rely on randomness or probabilistic finality. While Mysticeti avoids equivocation
and improves parallelism, it assumes a fixed validator set, and its applicability to
dynamic or permissionless environments remains an open question, along with the
added complexity of tracking proposals and evaluating commit rules.

Execution-layer DAGs and Non-ledger DAG Usage

Certain blockchain platforms, including Sui and Aptos, make internal use of DAG
structures to improve execution-layer parallelism. These systems employ consensus
protocols such as Bullshark[4, which leverage DAGs to decouple data dissemination
from consensus, but do not expose a DAG-based ledger structure to end-users.
Instead, DAGs serve as auxiliary tools for transaction scheduling and execution
ordering within otherwise traditional BFT frameworks[20]21].

In both Sui and Aptos, transaction dependencies are modeled as causal DAGs to
enable speculative parallel execution. However, global ordering and state finality are
achieved via consensus mechanisms that produce linear ordered chains.

The systems reviewed in this section demonstrate the diversity of architectural
approaches to DAG-based consensus. While some protocols adopt DAGs as the core
structure for global ordering and transaction validation, others utilize them locally to
optimize execution-layer concurrency. These differences highlight a broad design
space in which trade-offs arise between performance, consistency, security, and
implementation complexity.

The Overview of Smart-Contract Virtual Machines

Tychoʼs Virtual Machine VM implemented ideas initially proposed for TON VM and
therefore significantly different to any existing protocol. The VM's advantages stem
from both its underlying TVM architecture and design choices, and Tycho's specific
optimizations for parallel blockchain execution which is different to any known to date
smart-contract platform. In the present section we give a brief overview of the most
popular VMs.

The Ethereum Virtual Machine, initially proposed in 2015 to overcome the limitations of
the Bitcoin Script, has been a long-standing leader in setting common standards for
smart contract developers. It has successfully abstracted away the complexity of the
computation engine from the process of building sophisticated smart contract systems
that compile to Ethereum's instruction set. The share of developers working in
Ethereum ecosystem (#1 across the globe 22 exposes it as the clear winner in terms
of adoption of a programmable blockchain platform if compared to its predecessor
Bitcoin.

As the first mover in terms of shaping the “Smart contract Virtual Machineˮ concept,
the EVM must have addressed some fundamental problems. Due to the halting
problem, the EVM needed variable gas costs to meter the execution of smart contracts
with cycles as they go. Other key characteristics of EVM include: a 1024-depth stack
for operands, 256-bit word size, and the stack architecture which means instructions
push/pop values on a LIFO stack for operations(e.g. an ADD pops two numbers and
pushes the sum). EVM is single-threaded globally and consequently has performance
limitations which may be addressed via adding different computational layers on top of
the base layer. Despite that, it is now the de facto standard for many Layer-1 and
Layer-2 L2 chains.

Figure 1. Types and flavors of purpose-built virtual machines for smart
contracts and blockchain protocols.

Such lesser-known projects as Tezos – Michelson Stack VM for Formal Verification)
and NeoVM seem to be underrepresented in the literature. Whereas having their own
distinctive features, both VMs make an attempt to guarantee EVM compatibility as
reported by the documentation 2324. Similarly to Bitcoin Script, Michelson operates
as a stack machine. it has no variables, only a stack that instructions manipulate. The
Tezos VM interprets Michelson opcodes in sequence, modifying the stack. The

execution model of NeoVM is explicitly stack-based, too. However, it has multiple
stacks, which makes it fairly different to other solutions. The NeoVM operates with an
Evaluation Stack for operands and results; an Invocation Stack for managing call
frames (each contract call or function call pushes a new execution context on the
invocation stack); and a Result Stack for returning results. Neo is not reflected by the
Electric Capital Developer Report 2024 22 which indicates its low adoption or
potentially very closed community.

Algorand #32 follows Tezos #30 in the 2024 developer rank 22 but its consensus
and virtual machine design attracted the researcher's continuous attention since 2016
25 when it was initially proposed. The Algorand Virtual Machine AVM runs
programs written in TEAL Transaction Execution Approval Language). Bartoletti et all
26 demonstrated an application of developed declarative smart contract language
for formal verification of fundamental properties of the underlying blockchain protocol.
A higher-level PyTeal library for constructing TEAL scripts is also mentioned by the
authors. The AVM runs these instructions sequentially in a stack. It closely resembles
a simplified Forth-like VM. TEAL opcodes cover arithmetic, logic, crypto (hash,
signature verification), flow control, and state access (reading/writing local or global
state). Algorand continues to evolve the AVM (currently documentation suggests v9
version as the most recent).

The Move VM was developed for Facebook's Libra and evolved into Aptos and Sui
networks. The distinctive feature of the Move Smart Contract language became a
top-down design with a strong focus on security and safety. A group of researchers
introduced a new smart contract VM tailored to a resource-oriented programming
model 27 and later proposed tooling for easy proving of developed smart contracts
which may be facilitated along with testing them 28. The Move VM guarantees that 1
coin in a resource variable will never be duplicated or lost. By analyzing which
resources a transaction touches, the executor can run multiple Move transactions in
parallel.

The Solana VM SVM is the first VM that attempted to widely adopt a hostʼs runtime
environment for parallel execution of smart contracts in a blockchain protocol aimed to
achieve maximally possible throughput and lowest latency. Solana uses a unique
execution environment designed for massive parallelism. "Programs" on Solana are
written in Rust (or C/C, compiled to Berkeley Packet Filter BPF bytecode, and
executed by Solana's BPF interpreter or JIT on-chain. A similar approach but applied
to IoT 29 demonstrated the substantial benefits of register-based VM over WASM's
stack-based design. Inside Solana's VM, thousands of contracts BPF programs) could
run in parallel across the validator's CPU cores with little overhead to the validator
node. According to Zandberg and Baccelli 29, the BPF VM design required only 10%

more memory for running an application in the VM than running it directly on the
microcontroller without VM.

DAG Consensus & Collator
Initial design of the TON consensus considered non-guaranteed deliverability and
processing of messages by nodes along with block production. Tycho preserves
non-guaranteed deliverability as a design principle for increased throughput while
addressing internal availability via introduction of 2-phase-commit 2PC approach to
message processing and transaction settlement. The important place in the
architecture belongs to DAG topological structure remotely resembling the Unspent
Transaction Output design approach.

Tycho’s 2-Phase-Commit

The introduction of Tycho DAG and its implementation in Rust followed a
re-implementation of Catchain (short for Catch-Chain 30 in Rust. This is a Byzantine
Fault Tolerant BFT protocol designed for asynchronous block production and
finalization in a decentralized validator set in the presence of network delays or
malicious nodes. It was originally proposed for The Telegram Open Network (currently
The Open Network 31 by N. Durov 31. It ensures that all honest validators agree on
the same block history, aiming to get a stake-weighted majority of signatures for a
block through stages of proposing and voting. Although the whitepaper 31 mentions
potential utilization of DAG topology with regard to Shard state or generally any
abstract cell tree representations, early implementation did not introduce it. Therefore
no deduplication of external messages before execution took place and the consensus
layer relied solely on replay protection in smart contracts; also no guarantees were
made on external messages delivery. Thus, Tycho may be seen as an implementation
of very early ideas envisioned for TON, with more specifics applied due to acquired
experience.

In the proposed two-stage approach, a pending external message first enters the
Mempool, which is structured as a DAG, and may be processed by the Collator.
Previous works, Googleʼs Spanner 32, Narwhal/Tusk 6, and the openCBDC project
33 highlighted the benefits of two-phase commit 2PC, despite differences in the
implementation details of each protocol. It is important that in the openCBDC Project
Hamilton) initiative, the authors implemented and evaluated two alternative
architectures: the atomizer architecture and the 2PC architecture. They concluded that
while the atomizer provides a globally ordered history of transactions, it suffers from
limited throughput. The 2PC architecture, by contrast, achieved near-linear scalability

in peak throughput with additional resources, but it did not preserve a globally ordered
list of transactions. Similarly to openCBDC, the Tycho DAG adopts a localized view of
transaction history, enabling parallel execution of non-conflicting chains of messages
that trigger smart contract execution.

Mempool

The purpose of the DAG-based “Mempoolˮ in Tycho is to provide collating nodes with
a common set of external messages. In very general terms, it acts as a persistent ring
buffer with a short lifespan of the containing data, as opposed to collated blocks, and
serves as a distributed merger of iterators over external message queues kept in every
collating node until they become a part of DAG. This section provides some details
about DAG inner workings.

Figure 2. local DAG of point references viewed by node B at round 6; global
sub-DAG is determined by points C3-C5 where C3 is an anchor; B6 is a source

vertex and round 1 contains sink vertices pic source.

We begin with defining a "point" as the basic object of the mempool that carries
external messages and metadata. It is essentially a vertex in a node's local DAG, but it
is not necessarily included in the global DAG yet which is a result of their intersections.
Every node builds its local view of DAG according to the references to the previous
round specified in each received point. The requirement for nodes to agree if some
point becomes a part of the global DAG demands a consensus-like algorithm.

Each node produces a new point during every broadcast round, provided it hasn't
fallen behind the majority of nodes. After broadcasting each point, a node requests
signatures from other nodes. Each signature serves as a guarantee of the point's

https://excalidraw.com/#json=TMXBt4hFl4G5mUYqL3uMf,AjMYdfseq-JjH9h7XgwNFg

validity, persistence, availability, and referenceability. Nodes will only sign points from
their current round or the immediately previous round. When the majority completes
one round and begins the next, lagging nodes abandon the previous round and
advance directly to the current one, since there's no benefit to producing points for
outdated rounds.

When a node has signed a point from the previous round, it must explicitly reference
that point in any new point it creates for the current or the next round. Additionally,
every point must reference the majority of points from the previous round. For points
from two rounds prior, a node references only those it has previously signed but not
yet directly referenced.

Figure 3. If nodes sign only the current broadcasting round, then in the
absence of the unreliable minority consensus may stall, because some nodes
may have accumulated enough signatures and references to advance their

round while the others haven’t. pic source.

Gaps may appear in the sequence of points when a non-malicious node joins
mid-session. In such cases, the absence of signatures is permissible. However, when
a node creates points in two consecutive rounds, the later point must include
signatures for the previous one, or it will be invalid. Consequently, nodes must skip at
least one round when they cannot include the required signatures.

Each skipped round represents a failure to fulfill the requirement of referencing a
signed point. Other nodes will detect this behavior through DAG path analysis (along
with ignored signature requests), increasing the lagging node's likelihood of being
classified as unreliable or malicious.

A majority of signatures also ensures the uniqueness of signed points: within a single
slot (defined by producer node and round), only one point can obtain it. However,
point equivocation, i.e. when alternative points coexist in a single slot, can be
referenced by different points from distinct slots, each of which may acquire majority

https://excalidraw.com/#json=TMXBt4hFl4G5mUYqL3uMf,AjMYdfseq-JjH9h7XgwNFg

signatures. The protocol will detect and treat equivocation patterns as violations of
consensus and corresponding penalty will follow.

The consensus mechanism considers only quorum nodes and is not stake-weighted. A
full quorum consists of 3F1 nodes, where at most F nodes may be Byzantine
(exhibiting arbitrary behavior), while 2F1 nodes are expected to be reliable. This
approach guarantees that within a few rounds, any point will have a path to the first of
two consecutive points through quorum intersection. On the Figure 4 if a point at
round 1 is signed by 2F1 nodes, then at least 1F1 points (because 1F among 2F1
may be byzantine) will reference it directly at round 3 (a point may be signed as from
previous round only), so any point at round 4 will have a path to it (due to mandatory
2F1 references from previous round). If a point at round 2 exists to carry those 2F1
signatures, it is a marker of the described pattern.

Figure 4. Quorum intersection. pic source.

Since any point may represent an equivocation, three consecutive points provide a
guarantee: the first point is uniquely referenced through the second, and the second
will be referenced by any subsequent point. These three consecutive points form the
so-called "anchor pattern," where the first point serves as an anchor that belongs to
the global DAG along with all its references. The guaranteed path existence enables
anchors from every fourth round to form a reproducible chain at any node, allowing
lagging nodes to synchronize.

Every four rounds, a random node is selected as the leader. When that node produces
three consecutive points, the resulting anchor is committed to the DAG. This means at
least a majority of nodes observe a common sub-DAG and traverse it identically to

https://excalidraw.com/#json=TMXBt4hFl4G5mUYqL3uMf,AjMYdfseq-JjH9h7XgwNFg

establish a consistent ordering of referenced points while preserving the historical
sequence of rounds. A commit represents an irreversible state change that defines the
data passed from the mempool to the collator, or change from the 1st phase to the
2nd.

External messages are extracted from each ordered point and must undergo
deduplication which is done using a sliding window of rounds in a dedicated structure.
Duplicates may happen because validators notify their closest neighbors about new
external messages before they reach the mempool, resulting in redundant data that
occupies part of the mempool's throughput to ensure reliable delivery.

Figure 5. Illustration of sliding window of rounds carried out by
Deduplicator.

However, the Collator receives deduplicated and ordered external messages uniquely
identified by the anchor round. Setting aside the Collator's internal workings for now, it
ultimately produces identical blocks on every node because collation is deterministic
and the input data remains consistent across at least a majority of nodes. Each signed
master block contains the same last processed anchor ID, which is reported back to
the mempool. In turn, the mempool cannot initiate rounds significantly beyond this
anchor value. This feedback mechanism ensures the mempool broadcasts at rounds
below a certain threshold, enabling seamless validator set changes that are planned
for and executed at that designated round.

The DAG consensus configuration changes are possible but it requires a mempool
restart (without restarting the entire node) because point validation rules change in
incompatible ways. The new DAG is initialized with a newly generated common
genesis point, and the state machines resume operation from scratch.

Collator

The previously described DAG-based “mempoolˮ manages the first stage of the two
stage message commitment. In the second stage Collator creates new blocks and
simultaneously conducts higher level computations (see Figure 6. While the DAG layer

does not execute transactions directly, the Collator is a system component that
collects external and internal messages, processes them according to their logical
timestamps, and forms execution batches (blocks). It acts as the orchestrator,
preparing input data for execution of smart contracts in the Executor and ensuring that
messages are processed deterministically. The collator also assembles blocks and
notifies the DAG layer in a feedback loop with the last processed anchors, blockchain
config changes, etc.

Figure 6. The Tycho Collator and its workflow.

The diagram on Figure 6 demonstrates the main stages of the block collation process
which results in a new block. At the beginning collator reads available internal
messages and receives new external messages from the Mempool. It groups
messages for execution in such a way that maximizes the number of concurrently
executed transactions, the Virtual Machine instances execute these messages on
multiple accounts, the Collator saves transactions, changes account states and
collects new internal messages produced as a result of executed smart contracts.
While computational and size limits of the block are not reached, the Collator repeats
the cycle of reading, grouping and executing messages.

Block limits include two main variables which indirectly limit its size in bytes/bits:

● Gas usage (for transaction execution);

● Logical time LT delta.

The Collator terminates the current block construction process when one of these
thresholds is reached. Limiting block size is not considered as a priority in Tycho
because this constraint may implicitly follow other constraints such as amount of
accounts to be processed or number of transactions or external messages to collate.

The current Collator configuration implementation adopts the same model as TON,
maintaining so-called soft and hard limit definitions in the config. However, the current
system virtually disables hard limits, eliminating the rigid internal-then-external
message prioritization. This streamlined approach allows continuous block collation
until any hard limit is reached, removing the need for soft/hard limit distinctions in
practical operation.

On the final stage the Collator forms an updated state, computes a Мerkle update and
finalizes a new block candidate, which combines various data and pointers:

● The block data (transactions, state updates, etc.);

● Reference to the masterchain seqno;

● Indication of whether it's a key block;

● Previous block IDs;

● Top shard block IDs;

● Value flow information;

● Queue diff information.

Since the first level commitment (via consensus) at the mempool level guarantees the
order of external messages that the collator receives, and message grouping for
execution is performed strictly deterministically, all nodes participating in consensus
must produce absolutely identical blocks.

This block candidate can then be validated and, if valid, added to the blockchain.
During the validation process network nodes exchange signatures of the issued block
among themselves and once ⅔1 signatures are accumulated by the weight of the
stack, the Collator considers the block valid. If a node fails validation, then it begins
synchronization and the collator will receive a valid block issued by the majority of
other nodes. It will not be the same as the nodeʼs own block to be released. The
collator cancels the current active collation of the next block, deletes the incorrect
block and all uncommitted changes, loads the correct state from the database and
continues working from this state.

For validation purposes, nodes exchange minimal data between themselves: a node's
public key and a signature of the block's root cell hash. Each node uses the hash of its
own next produced block to verify another's signature. This way nodes do not
broadcast the actual blocks over the network. The exchange of signatures is
performed very quickly over the network. However, if a node has not performed block
collation, then it doesn't have the source data to verify the signature. It forces network
participants to join the second stage commitment and include messages into blocks
deterministically.

Deterministic execution of messages during collation requires certain rules and
constraints which provide deterministic ordering. The execution ambiguity must be
prevented, and the consistent state transitions across all validator nodes must be
achieved.

Therefore, messages within a contract must execute in strict logical time hash order,
ensured through outbound message logical time rules and message selection rules.

Outbound message LT rules consist of:

● Rule LTM₁ > LTM₀, which means that sequential messages M₁ and M₀ from
contract A maintain monotonic logical time ordering.

● Rule of block-level ordering, which means that messages in block B1 have
higher LT than in block B0.

Additional message selection rules include:

● Sorting by ascending logical time hash per recipient account for queued
messages in the buffer.

● Strict logical time hash ordering for execution groups.

● Ordered execution in cohorts and guaranteed temporal precedence in separate
buffers.

Resolution of co-dependent states is especially important. For them a “Triangle
Constraintˮ ensures a specific order of interdependent state transitions. Letʼs consider
a situation when contract A simultaneously sends message M1 to B and message M2
to C, and B's execution of M1 generates another (internal) message M3 to C. Then
according to this constraint, C must process message M2 before message M3 Figure
7.

Figure 7. An Illustration of “Triangle constraint” rune for interdependent
contracts with simultaneous calls.

The сonstraint is implemented as follows: M1 and M2 enter a set S1. Message M3
enters the subsequent set, ensuring M2 executes first regardless of whether
processing occurs within the same block or across blocks. Cross-block scenarios
maintain ordering through queue precedence over new message sets.

On the final note, Collator also implements a set of technical decisions which help to
improve its performance and protect from denial of service type failures while working
together with the DAG layer. These include:

● Isolation of large internal messages queues into dedicated partitions;

● Separating queue state from shard state using minimalist structures for state
storage and diff exchange;

● Maximizing parallel transaction execution in the VM through efficient message
buffering and grouping;

● Minimizing bandwidth requirements for peer-to-peer connections;

● Implementing parallel Merkle update computation and shard state change
persistence (see Data Storage section).

The low level technical implementation of the Collator follows the principle of
maximally possible parallelization of operations. This principle adds up to outlined
architectural decisions specifically relevant to blockchain protocol that aims to be
highly performant.

Work Units

To produce identical blocks on the same block height synchronously, all nodes should
have ordered external messages incoming from the DAG mempool. Their collators
must have an identical set of both anchors and (external) messages. Work units
provide a feedback mechanism for collators to keep up with network conditions.
However, letʼs consider first the challenges arising from the requirement for all nodes
of the network to have identical sets of anchors and external messages in more detail.

The timing of anchor and block processing creates significant synchronization
challenges in distributed blockchain systems. Since different nodes experience
varying delays when receiving anchors and releasing blocks, it's impossible to import
anchors based on system time without risking nodes desynchronization in the
network. While releasing an anchor in the mempool typically takes 10001200 ms
compared to the much faster 400 ms block release time, importing anchors before
every block would result in unnecessary 600 ms delays. However, implementing a
fixed interval approach (such as importing anchors every N blocks) proves equally
problematic - for instance, importing every 3 blocks at 500 ms intervals 1500 ms
total) would lag behind the 1200 ms anchor release cycle, causing the collator to fall
behind the mempool. This lag increases the time difference between when externals
enter the mempool and when they're processed, degrading network latency for users
and causing DAG size growth. The situation becomes critical when the mempool
pauses after exceeding the maximum allowable lag threshold relative to processed
anchors: if the last processed anchor A is A1 while the last imported is A218, and

the mempool pauses at round R221 (with a 220-lag limit), the collator's request for
the next anchor after A218 will cause a complete network deadlock since the paused
mempool cannot provide anchor A222.

To synchronize with the mempool, the collator evaluates the time spent on block
release in units called Work Units WU. The WU calculation formula takes into account
the number of read messages, the number of dictionary operations, gas consumed in
the VM, the number of updated accounts, outgoing messages, etc. The coefficients
used in the formula are specified in the network configuration. This way, each node
evaluates block release time in WU identically, regardless of the actual time spent. The
network configuration also sets an estimated average time for releasing one anchor
measured in WU. As a result, if there is increasing load and the accumulated amount
of WUʼs during the release of previous blocks exceeds what's necessary for releasing
one anchor, the collator imports an anchor before the next collation. If enough WUʼs
have accumulated for N anchors, then N anchors are imported at once. This way, all
nodes will deterministically import the next anchor after the same block at height
seqno.

Currently, the WU calculation coefficients are set manually based on conducting
numerous network tests under various loads. The formula isn't perfect, so estimation
accuracy may change if the load profile changes. If the estimation is inaccurate, the
collator may still "idle" or lag behind. Therefore, it's necessary to implement
functionality for adjusting WU calculation parameters based on consensus between
nodes.

Each node, when importing an anchor, determines whether the collator lags behind the
mempool by checking if the anchor waiting time falls within a specified range. If a
node regularly makes errors in estimating block release time in WU, it "votes" for
parameter adjustment. Votes are sent as special external messages on behalf of nodes
to a special contract that, upon reaching quorum, performs WU parameter adjustment
in the network configuration. This way, automatic adjustment of WU calculation
parameters will occur to keep the collator synchronized with the mempool.

However, the problem of possible node hanging when the collator requests the next
anchor remains unaddressed. To resolve the issue, the collator obtains the current last
processed anchor from the previous master block. Then it compares the last
processed anchor with the last imported one. If the last imported anchor exceeds the
last processed one by ⅔ of the maximum allowable lag 146 rounds), the collator
stops importing anchors to clear accumulated externals and move the boundary of the
last processed anchor. This way, the last imported anchor will never be higher than ⅔
of the allowable lag, meaning the collator canʼt be hanging on anchor import
permanently.

While traditional blockchains like Ethereum use gas limits primarily to constrain
transaction execution within blocks, Tycho's Work Unit system serves as a
multi-dimensional synchronization mechanism that accounts for message processing,
dictionary operations, VM gas consumption, account updates, and outgoing messages
to deterministically estimate block release time across all nodes. This approach
transforms the static gas limit into a dynamic feedback system that enables precise
mempool synchronization, ensuring all collators maintain identical anchor import
timing regardless of hardware variations. By incorporating automatic parameter
adjustment through consensus-based voting, Work Units effectively solve the
distributed timing challenges that simple gas limits cannot address, making them a
more advanced and adaptive version of the fundamental resource constraint
mechanisms that govern blockchain block production.

Virtual Machine & Smart Contracts

The Tychoʼs Virtual Machine follows major principles outlined across the whole TON
whitepaper document. A potential better outcome for interoperability between different
networks that have adopted flavors of TVM is an important feature to consider here.
The original principles turned out to be general enough to allow customization of
popular Solidity smart-contract language to TVM and its step-by-step improvement. A
reference implementation of Tycho VM and so-called Executor are open source and
available on GitHub 3435. The original TON VM whitepaper does not mention more
practical aspects of the TVM which are rather important for application developers and
may not exist in other VMs. The present section of Litepaper attempts to fill this gap
and sheds light on how smart-contracts work in Tycho at the nodeʼs level.

The protocol diagram on Figure 8 depicts the relation between Collator and Executor
during execution of the message group, and suggests it as part of the Collator. The
Executor is a pure function-like component that applies transactions to the system
state. Given the input parameters (for example, account states and external
messages), it produces a new account state and transaction results. In the present
document, the Collator section mentions the Executor as part of general message
processing that consists of different phases.

Figure 8. Message group execution workflow during block collation.

It handles various types of transactions. These are:

● normal account messages with data and smart-contracts,

● special transactions which create new assets and recover transactions,

● tick/tock transactions that execute system transactions for fundamental
addresses,

It also converts results into new messages for the output queue of the smart contract.

The Executor initializes during the so-called Prepare phase with blockchain
configuration and executor parameters. This way it enforces rules like gas limits and
validity checks. During the Execution phase, it processes messages in sequence:
“tick-ˮ transactions, special transactions, then regular message groups, and then
“-tockˮ transactions. Importantly, the executor launches the virtual machine when
needed and parses its results.

Figure 9. Tycho VM Sandbox and main message’s lifecycle phases: Compute and
Action.

On Figure 9, the Executor wraps the Tycho Virtual Machine which reflects an actual
architectural decision: hundreds and thousands of TVM instances, or “sandboxes ,ˮ
could run in parallel and carry smart contracts through different phases, most

importantly Compute and Action phase. Besides, an ordinary transaction flow includes
the Credit phase, Storage phase, and Bounce Phase (mentioned in the opcodes
section of the whitepaper 31 but only Compute and Action phases are practically
relevant to Tycho VM. On the scheme, they are shown as the most crucial during the
execution of the smart contract. The ˮExecutorˮ manages all other phases, too.

The VM operates strictly on the stack and registers as inputs and produces an
updated stack, exit codes, and possible register modifications for the Action phase
(see Figure 9. The VM executes the actual bytecode of smart contracts, but it does
not manage account balances or message flows directly, because of its sandboxed
environment. These responsibilities remain with the Executor that manages invocation
of VM via vm.run() during the Compute phase.

The Compute Phase is the only stage where the TVM executes the smart contract
code invoked by a message containing a bag of cells. All internal computations occur
during this phase which are not involving other contracts states. However, the contract
may invoke libraries provided by the Executor which are stateless smart contracts. The
Compute Phase is deterministic because it involves underlying deterministic structures
(cells), its result depends on the input data and the current state of the smart contract.
If an exception occurs during the Compute Phase (e.g., due to out-of-gas errors), the
entire transaction is aborted, and the Action Phase does not start. At the end of this
phase, the TVM prepares a set of "output actions" for dispatch during the Action
Phase. Besides exceptions that may occur as a result of smart-contract
implementation errors, TVM also supports stopping and resuming smart-contracts via
Continuations. In the TVM, they are first-class citizens and an equivalent to execution
tokens, thanks to deterministic cells. They enable control flow graphs, and participate
in exception handling of a smart contract.

In the Action Phase, the Executor dispatches output messages created during the
Compute Phase. These actions may include calling other smart contracts within the
blockchain network or leading to various outcomes such as token transfers and state
changes of the receiving contract, and code change of the contract that just finished
the Compute Phase. However, the actual state changes only occur if the Action Phase
is successfully completed.

Tycho's Virtual Machine architecture represents an implementation of original TON VM
principles 36 with practical enhancements for high-performance blockchain
execution. The separation of concerns between the Executor and TVM creates a
robust framework where the sandboxed virtual machine focuses purely on
deterministic computation while the Executor manages the broader transaction
lifecycle and system interactions.

Most importantly, the architecture's support for parallel execution of TVM instances
positions Tycho to handle the demanding throughput requirements of modern
blockchain applications.

Data Storage

All previously described architectural components, namely DAG mempool, Collator and
Executor rely on a sophisticated multi-layered storage architecture (see diagram on
Figure 10 that ensures persistence and high throughput of dependent sub-systems.
The storage system is organized into several distinct RocksDB databases that serve
different purposes:

● Base DB stores core blockchain data including blocks, states, cells, and
archives;

● RPC DB stores transaction and account data optimized for RPC queries;

● Mempool DB stores DAG-related data like points and their statuses.

This way, the storage system creates multiple database instances with resource
partitioning to avoid contention between different workloads. The storage system
implements intelligent memory allocation based on available system memory. It
calculates memory usage for various components and distributes the remaining
memory between the cells cache and RocksDB LRU cache.

Serialization & Low-level Storage Optimization

At the low level, Tycho nodes store all data in a collection of cells, similar to the TON
VM architecture. This collection is called a "bag of cells," which is, mathematically, a
set that prevents cell duplication. This design transforms the main paradigm of
"everything is a value" from the TVM whitepaper 31, 36 into an "everything is a cell"
principle, supporting a flexible type system and more compact serialization formats.
Each cell is a binary structure that can carry up to 1023 bits of data and up to 4
references to other cells. These cells can form deterministic DAG structures, which
enable the construction of Merkle trees and support reference counting.

The system implements deduplication at multiple levels through a specialized cell
database. At runtime, cells with identical hashes point to the same physical memory
location, with lazy loading ensuring that entire trees aren't loaded until accessed. The
underlying RocksDB storage maintains mappings of hash - > (refcount, child_hashes,
data), where reference counting is crucial since individual cells can appear multiple
times across the entire DAG.

Figure 10. Tycho Node Storage System functional components.

As part of the Shard State Storage inside Base DB, the cells column family receives the
most sophisticated optimization as it stores the core Merkle tree data. The hash-based
memtable with buckets eliminates the insertion overhead of maintaining sorted order
during the high-frequency cell write operations, while the large memtables with
buffers provide substantial write buffering to reduce flush frequency and maintain
consistent write performance. The 5-level LSM tree structure is specifically tuned for
the large-scale dataset typical of blockchain cell storage, providing efficient
compaction strategies that balance read and write amplification. Bloom filters offer
high-precision negative lookups, crucial for quickly determining cell existence without
expensive disk seeks, while direct I/O bypasses the kernel page cache to prevent
double-buffering and gives RocksDB full control over memory allocation. Finally,
compact-on-deletion ensures immediate space reclamation during garbage collection
operations, preventing the accumulation of tombstones that would otherwise degrade
read performance and storage efficiency. This is a critical consideration given the
frequent state cleanup operations inherent in blockchain node operation.

Shard State Storage

The Shard State Storage in Tycho manages blockchain state data in coordination with
block storage. Most importantly it contains the core storage for individual state cells
with sophisticated optimization mentioned in the previous section. An auxiliary
Temporary Cells table is used during state processing for intermediate cell storage.

Shard States Table connects to the Block storage via mapping BlockId to the root cell
hash of the shard. The Block Handle Storage, a sub-component of the Block Storage,
tracks state availability flags and ensures proper sequencing of block processing and
state computation before feeding it into Shard States. The system implements
coordinated garbage collection that removes outdated states while preserving
referenced cells through atomic reference counting, maintaining storage efficiency as
the blockchain grows.

The system maintains separation of concerns from block storage while sharing the
same database infrastructure, allowing both systems to operate efficiently within the
same node instance.

State Management and Merkle Updates

The Collator and its components facilitate state change for the whole Tycho protocol
using several key data structures:

● WorkingState that contains the complete context including the usage tree,
master chain data, and previous shard data;

● PrevData which encapsulates both observable states (with usage tracking) and
pure states (original states);

● ActualState which is Core state maintained throughout all collation phases.

Block processing involves Merkle updates containing virtualized old ActualState) and
new states WorkingState), where unchanged cells are pruned to retain only their
hashes. When applying a new block, the system performs a depth-first traversal from
the root, stopping when encountering existing cells. All traversed cells have their
reference counts incremented by one, with all key-value pairs written to RocksDB in a
single transaction using merge operators.

Previous states undergo garbage collection through similar traversal, decrementing
reference counts. RocksDB's compaction filter removes cells with zero reference
counts. The system addresses performance challenges through parallel graph

traversal for large states and optimized I/O operations. However, state update
complexity scales as O(updates × log₂(state_size)), creating throughput limitations
depending on the amount of active accounts.

State sharding presents another challenge. While reducing individual shard update
sizes through independent processing (log₂(size/n)), physical separation into different
databases eliminates deduplication benefits, potentially doubling storage
requirements. Future optimizations include implementing cuckoo maps for faster cell
existence checks and developing custom databases optimized for hashmap
operations with counter increments and write-ahead logging.

Previously described Work units WUs system help to coordinate the state
management system by means of measurement of computational resource
consumption across different phases of block collation. This includes tracking work
units for message preparation, execution, and finalization phases. The work unit
tracking feeds into the state management system by updating the field in the new
observable state, providing feedback for future collation attempts and resource
management.

Block Data

Tycho's block storage system implements a multi-tiered architecture that balances
performance, storage efficiency, and data availability. Unlike simpler blockchain
implementations that store blocks in flat file systems (for example Bitcoin's) or basic
key-value stores, Tycho employs a comprehensive caching hierarchy with TTL-based
in-memory caches, immediate package storage for critical block components, and
intelligent data splitting for large blocks. This design mirrors and extends TON's
storage philosophy but introduces more granular control over data lifecycle
management and enhanced compression strategies optimized for different data types.

Figure 11. Tycho Block Storage Architecture.

The protocol implements a three-tier storage model consisting of hot in-memory
caches, warm package storage, and cold compressed archives Figure 11. Recent
blocks remain in fast-access storage with full metadata availability, while older blocks
are progressively moved to ZSTD-compressed archives organized as sequential
chunks with configurable size limits. This archival approach significantly reduces
storage overhead compared to traditional blockchain nodes that maintain all historical
data in uniform format. The block handle system provides efficient metadata tracking
through bit flags that indicate data availability status. There is no distinction whether
block data, computed state, proofs, or queue diffs are stored, thus enabling nodes to
quickly determine what information is accessible without expensive disk operations.

Tycho's block storage tightly integrates with its sophisticated shard state storage
system. This integration allows for efficient state transitions where new blocks can
reference existing Merkle tree cells from previous states, similar to TON's approach
but with enhanced garbage collection mechanisms. The system implements a
three-tier garbage collection architecture that independently manages blocks, states,
and archives, ensuring optimal storage utilization while maintaining data integrity and
availability guarantees for active network participants.

The storage system incorporates several advanced optimization techniques that
distinguish it from conventional blockchain architectures. Extensive use of Bloom

filters optimizes memory usage for cell lookups, while hash-based indexing enables
efficient point lookups and binary search indexing supports range queries. The system
implements adaptive write optimization with pipelined writes and rate limiting with
auto-tuning capabilities. Unlike TON's more uniform compression approach, Tycho
employs differentiated compression strategies. It leverages ZSTD compression for
compressible transaction and metadata and no compression for already-compressed
archives and cell data. For values exceeding 32KB thresholds it uses specialized blob
storage. These measures altogether ensure optimal storage efficiency across diverse
data types while maintaining high-performance access patterns for active network
operations.

Scalability & Interoperability

How Tycho Achieves Better Scalability

Queue State Separation from Shard State

The Tycho follows a principle of smart-contract state organization which includes
storing the output message queue of the related account as it was mentioned in TON
Whitepaper (sections 2.3.20, 2.4.7 in 31. The approach that was chosen for
implementation in TON allows storing the outgoing queue as a hashmap within the
shard state. But when queues become large, these hashmaps grow significantly,
causing noticeable slowdowns in both queue operations and overall state
management. Tycho solves this by separating outgoing queues entirely from the shard
state and storing them directly in the RocksDB table ordered by logical time hash with
the key structure:

{partition_id}{src_shard}{lt}{hash}

This approach provides several advantages:

● Faster reading and parsing. Messages with metadata are serialized and stored
entirely in binary form, rather than requiring cell tree traversal

● Efficient filtering. Only the first few bits need to be read to check recipient
addresses without full message parsing.

● Linear queues are significantly faster to read, trim from the bottom, and
append to the top compared to hashmap operations.

● Optimized iteration. RocksDB iterators enable sequential reading of outgoing
messages from source shards within specified logical time hash ranges.

● Removing large queue hashmaps from shard state improves state
management performance.

The use of queue diffs for state changes is equally important - containing pre-ordered
new messages that were created but not executed during block collation, along with
processing boundaries. Peer nodes exchange queue diffs without messages content
which saves on bandwidth and traffic. During synchronization, the node that catches
up with the network, syncs only the message index and obtains message content from
outgoing messages in the past blocks.

High Performance Message Grouping

The parallel transaction execution optimization addresses a fundamental bottleneck in
blockchain transaction processing. The goal is to execute Na*Nm transactions in
groups where Na is the number of unique accounts and Nm is sequential messages
per account.

The multi-range reading mechanism with separate readers for different ranges allows
parallel execution of messages from subsequent blocks alongside those from previous
blocks, while maintaining strict ordering guarantees per account. By reading more
messages into buffers and then optimally filling groups from those buffers, the system
avoids scenarios where overloaded accounts force execution of underfilled groups.

Additionally, Tycho prevents large queues on single accounts from monopolizing
execution capacity through a sophisticated partitioning system. When message count
on account A1 exceeds limits, it's moved to isolated partition 1, where messages
execute with lower priority but guaranteed minimal throughput. The routing
mechanism using cumulative statistics and the <account_id, partition_id> mapping in
diffs ensures deterministic assignment while preventing "bouncing" between partitions
at threshold boundaries.

Minimized Data to Validate

The deterministic collation guarantee enables incredible efficiency - since DAG at
mempool level guarantees external message ordering and message grouping is strictly
deterministic, all consensus nodes produce identical blocks. As it was previously
pointed out in the section about Collator validation only requires node public key and
signature of block root cell hash. This eliminates the need to transmit actual blocks
during validation, with signature exchange completing very quickly over the network.

These architectural decisions represent a fundamental rethinking of blockchain
collation that goes far beyond incremental optimizations - they're the core innovations
that enable the performance gains over TON's approach.

Layer-2 Scaling

With regard to Tycho, detailed L2 plans are not currently finalized. At the moment
rollups may be considered as the most effective and well tested way to introduce
scaling in account-based blockchains. Whereas zero-knowledge proof schemes were
considered more optimal for TVM design, they are not efficient and involve massive
overhead costs for the VM.

Figure 12. Cross-chain contracts facilitate bi-directional transfers
between TON and a Tycho-based L2 chain

Ongoing work focuses on implementing compatible chains that can efficiently interact
with each other via dedicated contracts and intermediate light clients (see scheme on
Figure 12. The light client serves as an oracle, providing block proofs for cross-chain
contracts while validating structures and maintaining validator set transitions.
Together, these components eliminate traditional bridge elements like relays or
third-party signers, with security assumptions reduced to regular on-chain transfers
with additional time-based limitations. The oracle provides only data and proofs
without participating in consensus. Anyone can deploy the oracle service and use
existing contracts, or manually submit blocks in case of oracle failure.

Tycho-based chains are supposed to serve specific applications, such as
Decentralized Exchange DEX protocols, which face ever-increasing demand for
capacity in terms of gas, storage, and TPS. In this architecture, a single native base
layer token becomes a L2 token via cross-chain contracts with 11 backing. For other
tokens, compatible token standards are being developed to enable efficient bridging
with low maintenance costs.

Tycho-Based Protocols and TON

The Tycho prototype inherited a high degree of compatibility with TON regarding basic
concepts and architecture. In contemporary design, compatibility is not an end goal
but rather a means for achieving better interoperability with TON nodes and the
protocol in general.

Figure 13. Tycho-TON Compatibility Assessment

The visualization on Figure 13 represents common dimensions of comparison that
serve as simplified indicators of the overall compatibility score. The most significant
contributors to the high overall score are shared data structures and TON Virtual
Machine integration. These foundational elements allow developers to build a cohesive
ecosystem of smart contracts that are fully compatible with each other, serving as the
basis for more advanced approaches to achieve complete interoperability.

Furthermore, unification of the election system through the same opcodes and
structures enables the construction of "trustless bridges," assuming that the trust
model is no worse than that of the base layer of a single protocol.

Tycho nodes feature a dedicated component designed to provide a seamless
experience when switching between networks for end users. The TonCenter API

delivers a TON node RPC API with TON-compatible data structures and responses that
can be accessed by third-party applications without requiring any changes or
incurring maintenance costs.

Figure 14. Application-level compatibility

Network
QUIC Quick UDP Internet Connection) serves as a primary transport protocol for
peer-to-peer communication between Tycho blockchain nodes in place of ADNL
Abstract Data Network Layer) and RLDP Reliable Large Data Protocol) used as
network communication protocols in TON. The network layer is built around an
established library to provide reliable, multiplexed communication over UDP. In
addition to that, If compared to TON ground up approach, Tycho networking layer
focuses rather on direct peer-to-peer connections than on complex routing topologies
and connection management handled by the underlying QUIC implementation.
Besides, while ADNL is also built on UDP, QUIC has better deliverability assurances
than ADNL and RLDP which runs on top of ADNL.

Similarly to TON 31, section 3.2, Tycho uses a DHT Distributed Hash Table) for
peer discovery (schematically represented by Figure 15. The implementation is a
Kademlia-like system that provides both peer discovery and distributed data storage
capabilities. Each peer has a 256-bit ID, and peers are organized using XOR distance
metrics. The closer two peer IDs are in XOR distance, the more likely they are to know
about each other. Both systems use Ed25519 cryptography for peer identity, but
handle it differently. TON maintains both full and short node IDs with complex address
list management and version tracking. Tycho uses a simpler PeerId wrapper around
Ed25519 public keys, relying on TLS certificate verification for authentication.

Figure 15. A schematic view of Tycho nodes interacting via QUIC with DHT
based peer discovery.

Beyond basic DHT discovery, Tycho supports two types of overlay networks that
operate on top of the base DHT infrastructure. Public overlays are topic-based
networks where peers automatically discover others who share interest in the same

overlay topic - when a peer joins a public overlay (identified by a unique overlay ID, it
periodically announces its participation in the DHT and actively searches for other
peers who have announced participation in the same overlay, creating a
self-organizing network of peers with shared interests. Private overlays, in contrast,
are closed networks with explicitly managed membership lists where peer discovery is
manual rather than automatic. In these kinds of overlays, peers maintain a predefined
list of member peer IDs and use the DHT solely to resolve the current network
addresses of these known members, ensuring that only authorized peers can
participate while still leveraging the DHT's address resolution capabilities to handle
dynamic IP addresses and network changes.

Benchmarking

Top-Level Performance Measurements

The Tycho protocol is undergoing active development with a rapidly evolving
codebase and currently lacks convenient tools for formal protocol auditing. For
illustrative purposes, a public website displaying protocol statistics can be used as a
trusted source of various performance metrics 32. Additionally, early adopters such
as Hamsterchain have reported throughput levels reaching approximately 35,000 TPS
in production environments, while internal testing demonstrates results up to 140,000
TPS.

The network can be thoroughly stress tested using a specialized toolkit composed of
two complementary components designed to simulate realistic network load
conditions. In this section, we provide a description of the main benchmarks and
report them alongside publicly available data on other protocols.

The data used in this analysis were drawn from official documentation, academic
papers, and technical whitepapers of the respective protocols 5,9,12,15,17,19,20,21.
The cited sources provide approximate values for transaction throughput TPS and
finality latency under nominal or best-effort conditions. In case of reported multiple
values, we adopted median or typical estimates to ensure consistency and collected
them in Table 1, which served as the basis for the plot in Figure 16.

Table 1.
Reported Performance of DAG-Based Blockchain Protocols

Protocol Throughput TPS Latency (s)

IOTA 800 20

Avalanche 4,500 2

Hashgraph Hedera 10,000 4

PHANTOM/GHOSTDAG 400 60

BlockDAG 400 45

Mysticeti 100,000 1

Sui/Aptos Shoal++) 130,000 1.5

The Tycho main benchmark setup consists of the primary utility, nekroddos 38, that
serves as a load generator capable of creating diverse network stress patterns under
varying scenarios, and the secondary tool that provides mass deployment of typical
wallet contracts for enlarging chain state. Nekroddos supports multiple load
generation modes, enabling developers and operators to simulate real-world
conditions, such as high transaction volumes, burst traffic, and sustained loads. The
tool interacts with pre-deployed smart contracts on the target network, ensuring
authentic transaction patterns rather than synthetic test loads.

Figure 16. Estimated Throughput vs Finality Latency for DAG-Based Protocols

To support the nekroddos utility, a dedicated wallet deployer component manages the
initial setup by deploying necessary smart contracts to the Tycho network. This tool
automates contract installation and generates a comprehensive list of contract
addresses that serve as input for the stress testing utility. It ensures a properly
configured environment with all dependencies required for accurate, production-like
testing.

Reported results in tests conducted using both utilities demonstrated a peak
performance of 140,000 TPS for external messages, with an average latency of 1.009
seconds. These results are plotted alongside other DAG-based protocols in Figure 15.

The protocol constantly improves and further research in developing reliable
benchmarks for cross-protocol comparisons is needed. For example, a major factor

behind the observed throughput growth up to 130,000 TPS is the size of the chain
state, i.e. the total number of active accounts. While this factor is not taken into
consideration in publications about competing DAG implementations, it plays a
significant role in Tychoʼs performance profile. However, the only metrics that users do
care about is simply throughput and settlement speed. Thus, while internal
benchmarking may be considered a mission-critical feedback mechanism, on the top
level only aggregated parameters help to deliver comprehensive inputs for making
informed decisions.

Conclusion
DAG-based blockchain protocols represent a promising yet evolving design space that
seeks to overcome performance and scalability limitations of sequential systems
considered as legacy systems nowadays. In this paper, we outlined major design
features of the newly proposed Tycho protocol.

Tycho demonstrates excellent results in terms of throughput and latency, in line with
what already existing protocols demonstrate in reports. Key challenges remain in
balancing performance with decentralization, ensuring consistency under
concurrency, and achieving robust finality in permissionless settings. While different
Tycho-based protocols may expose different trade-offs, the underlying architecture
remains highly compatible and expected to deliver superior interoperability with
optional implementation of so-called “layer twoˮ protocols on top of base layer.

Further research is required to formalize benchmarking practices, understand
adversarial resilience, and evaluate the applicability of DAG-based models to
general-purpose smart contract execution. Initial results demonstrate satisfactory
throughput of the Tycho protocol, which is trending toward such high-performance,
low-latency protocols as Aptos and Sui.

References

1 Thulasiraman, K. and Swamy, M. N. S. 1992. Graphs: Theory and Algorithms. John
Wiley & Sons.

2 Bang-Jensen, Jørgen and Gutin, Gregory 2008. Digraphs: Theory, Algorithms and
Applications. Springer.

3 Christofides, Nicos 1975. Graph Theory: An Algorithmic Approach. Academic
Press.

4 Spiegelman, Alexander, Giridharan, Neil, Sonnino, Alberto, and Kokoris-Kogias,
Lefteris 2022. Bullshark: DAG BFT Protocols Made Practical. Available at:
https://sonnino.com/papers/bullshark.pdf

5 Shao, Da, van Renesse, Robbert, and Sirer, Emin Gün 2023. Mysticeti: Leaderless
BFT with Deterministic Commit. Available at: https://arxiv.org/abs/2310.14821

6 Danezis, George, Kokoris-Kogias, Lefteris, Sonnino, Alberto, and Spiegelman,
Alexander 2022. Narwhal and Tusk: A DAG-based Mempool and Efficient BFT
Consensus. In Proceedings of the Seventeenth European Conference on Computer
Systems, ACM.

7 Bagaria, Vivek, Kitajima, Yusuke, Zhou, Yi, Das, Sankalp, Stoelinga, Mariëlle, and
others 2024. Reusable Formal Verification of DAG-based Consensus Protocols.
Available at: https://arxiv.org/pdf/2407.02167

8 Broxus 2025. Tycho: Reference Implementation of Tycho Protocol - Consensus
Module. GitHub repository. Available at:
https://github.com/broxus/tycho/tree/master/consensus

9 IOTA Foundation 2020. The Coordicide. Available at:
https://files.iota.org/papers/20200120_Coordicide_WP.pdf

10 Saa, Olivia, Cullen, Andrew, and Vigneri, Luigi 2023. IOTA 2.0 Incentives and
Tokenomics Whitepaper. Available at:
https://files.iota.org/papers/IOTA_2.0_Incentives_And_Tokenomics_Whitepaper.pdf

11 IOTA Foundation 2023. IOTA Ecosystem DLT Foundation White Paper. Available
at: https://files.iota.org/dlt/White_Paper_IOTA_Ecosystem_DLT_Foundation.pdf

12 Team Rocket 2019. Snowflake to Avalanche: A Novel Metastable Consensus
Protocol Family for Cryptocurrencies. Available at: https://arxiv.org/abs/1906.08936

https://sonnino.com/papers/bullshark.pdf
https://sonnino.com/papers/bullshark.pdf
https://arxiv.org/abs/2310.14821
https://arxiv.org/pdf/2407.02167
https://github.com/broxus/tycho/tree/master/consensus
https://github.com/broxus/tycho/tree/master/consensus
https://files.iota.org/papers/20200120_Coordicide_WP.pdf
https://files.iota.org/papers/20200120_Coordicide_WP.pdf
https://files.iota.org/papers/IOTA_2.0_Incentives_And_Tokenomics_Whitepaper.pdf
https://files.iota.org/papers/IOTA_2.0_Incentives_And_Tokenomics_Whitepaper.pdf
https://files.iota.org/dlt/White_Paper_IOTA_Ecosystem_DLT_Foundation.pdf
https://arxiv.org/abs/1906.08936

13 Amores-Sesar, Ignacio, Cachin, Christian, and Schneider, Philipp 2024. An
Analysis of Avalanche Consensus. arXiv preprint arXiv:2401.02811. Available at:
https://arxiv.org/abs/2401.02811

14 Ava Labs 2020. Avalanche Consensus Protocol Whitepaper. Available at:
https://www.avalabs.org/whitepapers

15 Baird, Leemon and Hedera 2023. Hedera Whitepaper v2.2. Available at:
https://files.hedera.com/hh_whitepaper_v2.220230918.pdf

16 Hedera 2023. Hedera Consensus Service Whitepaper. Available at:
https://files.hedera.com/hh-consensus-service-whitepaper.pdf

17 Sompolinsky, Yonatan, Wyborski, Shai, and Zohar, Aviv 2018. PHANTOM A
Scalable BlockDAG Protocol. Available at: https://eprint.iacr.org/2018/104.pdf

18 Perešíni, Martin, Benčić, Federico Matteo, Malinka, Kamil, and Homoliak, Ivan
2021. DAGOriented Protocols PHANTOM and GHOSTDAG under Incentive Attack via
Transaction Selection Strategy. arXiv preprint arXiv:2109.01102. Available at:
https://arxiv.org/abs/2109.01102

19 DAG Systems Ltd 2024. BlockDAG Whitepaper. Available at:
https://blockdag.network/blockdag-new-whitepaper.pdf

20 Mysten Labs 2022. The Sui Smart Contracts Platform. Available at:
https://docs.sui.io/paper/sui.pdf

21 Aptos Labs 2022. The Aptos Blockchain: Safe, Scalable, and Upgradeable Web3
Infrastructure. Available at:
https://aptosfoundation.org/whitepaper/aptos-whitepaper_en.pdf

22 Electric Capital, “2024 Crypto Developer Report,ˮ 2024. Available:
https://www.developerreport.com/

23 A. Falcão, “Protocol-based smart contract generation,ˮ 2023. Available:
https://afalcao.dev/

24 Tezos Foundation, “Tezos architecture,ˮ 2023. Available:
https://docs.tezos.com/architecture

25 J. Chen and S. Micali, “Algorand,ˮ 2017. Available: https://www.algorand.com/

26 M. Bartoletti and L. Galletta, “A formal model of Algorand smart contracts,ˮ in
Proceedings of the 2nd Workshop on Trusted Smart Contracts, 2018.

https://arxiv.org/abs/2401.02811
https://arxiv.org/abs/2401.02811
https://www.avalabs.org/whitepapers
https://www.avalabs.org/whitepapers
https://files.hedera.com/hh_whitepaper_v2.2-20230918.pdf
https://files.hedera.com/hh_whitepaper_v2.2-20230918.pdf
https://files.hedera.com/hh-consensus-service-whitepaper.pdf
https://files.hedera.com/hh-consensus-service-whitepaper.pdf
https://eprint.iacr.org/2018/104.pdf
https://arxiv.org/abs/2109.01102
https://arxiv.org/abs/2109.01102
https://blockdag.network/blockdag-new-whitepaper.pdf
https://blockdag.network/blockdag-new-whitepaper.pdf
https://docs.sui.io/paper/sui.pdf
https://docs.sui.io/paper/sui.pdf
https://aptosfoundation.org/whitepaper/aptos-whitepaper_en.pdf
https://aptosfoundation.org/whitepaper/aptos-whitepaper_en.pdf
https://www.developerreport.com/
https://www.developerreport.com/
https://afalcao.dev/
https://afalcao.dev/
https://docs.tezos.com/architecture
https://docs.tezos.com/architecture
https://www.algorand.com/

27 S. Blackshear, D. Costanzo, and G. Nelson, “Resources: A safe language
abstraction for money,ˮ in Proceedings of the ACM on Programming Languages, vol. 3,
no. OOPSLA, 2019.

28 M. Patrignani, “Robust safety for Move,ˮ in Proceedings of the 2020 ACM
SIGPLAN International Conference on Certified Programs and Proofs, 2020.

29 K. Zandberg and E. Baccelli, “Minimal virtual machines on IoT microcontrollers:
The case of Berkeley Packet Filters,ˮ in Proceedings of the 2020 International
Conference on Embedded Wireless Systems and Networks, 2020.

30 Nikolai Durov 2020. Catchain Consensus: An Outline. Available at:
https://api.semanticscholar.org/CorpusID212700976

31 TON Network, “TON Whitepaper,ˮ 2020. Available: https://ton.org/whitepaper.pdf

32 Corbett, J. C. et al. 2013. Spanner: Googleʼs globally‑distributed database, ACM
Transactions on Computer Systems, 313, Article 8. Available:
https://static.googleusercontent.com/media/research.google.com/en//archive/spanner
-osdi2012.pdf

33 Narula, N., Catalini, C., Duca, M., Foley, S. N., Lipton, A., Niepelt, D., et al. 2022.
A high performance payment processing system designed for central bank digital
currencies OpenCBDC. MIT Digital Currency Initiative and Federal Reserve Bank of
Boston. Available:
https://www.bostonfed.org/-/media/Documents/project-hamilton/2022/Project-Hamilt
on-Phase-1Technical-Paper.pdf

34 Broxus, “Tycho,ˮ 2023. Available: https://github.com/broxus/tycho

35 “Tycho VM,ˮ 2023. Available: https://github.com/broxus/tycho-vm

36 N. Durov, “Telegram Open Network Virtual Machine,ˮ 2020. Available:
https://ton.org/tvm.pdf

37 Tycho Protocol Team: Tycho protocol: Boosted TVM blockchain protocol 2025,
https://tychoprotocol.com, build FAST L1/L2 TVM networks based on state of the art
DAG consensus

38 KappaShilaff: nekroddos: Load generation utility for tycho network stress testing
2024, https://github.com/KappaShilaff/nekroddos/tree/master

https://api.semanticscholar.org/CorpusID:212700976
https://api.semanticscholar.org/CorpusID:212700976
https://ton.org/whitepaper.pdf
https://static.googleusercontent.com/media/research.google.com/en//archive/spanner-osdi2012.pdf
https://static.googleusercontent.com/media/research.google.com/en//archive/spanner-osdi2012.pdf
https://www.bostonfed.org/-/media/Documents/project-hamilton/2022/Project-Hamilton-Phase-1-Technical-Paper.pdf
https://www.bostonfed.org/-/media/Documents/project-hamilton/2022/Project-Hamilton-Phase-1-Technical-Paper.pdf
https://github.com/broxus/tycho
https://github.com/broxus/tycho-vm
https://ton.org/tvm.pdf
https://ton.org/tvm.pdf
https://tychoprotocol.com
https://github.com/KappaShilaff/nekroddos/tree/master

	
	
	
	
	
	
	Tycho Litepaper
	Content
	Abbreviations and Definitions
	Key Abbreviations
	Key Definitions

	Introduction
	The Overview of DAG-based Protocols
	IOTA, Avalanche, Hashgraph
	PHANTOM, GHOSTDAG and BlockDAG
	Mysticeti - Leaderless BFT with a DAG
	Execution-layer DAGs and Non-ledger DAG Usage

	The Overview of Smart-Contract Virtual Machines
	Figure 1. Types and flavors of purpose-built virtual machines for smart contracts and blockchain protocols.

	DAG Consensus & Collator
	Tycho’s 2-Phase-Commit
	Mempool
	Figure 2. local DAG of point references viewed by node B at round 6; global sub-DAG is determined by points C3-C5 where C3 is an anchor; B6 is a source vertex and round 1 contains sink vertices pic source.
	Figure 3. If nodes sign only the current broadcasting round, then in the absence of the unreliable minority consensus may stall, because some nodes may have accumulated enough signatures and references to advance their round while the others haven’t. pic source.
	Figure 4. Quorum intersection. pic source.
	Figure 5. Illustration of sliding window of rounds carried out by Deduplicator.

	Collator
	Figure 6. The Tycho Collator and its workflow.
	Figure 7. An Illustration of “Triangle constraint” rune for interdependent contracts with simultaneous calls.

	Work Units

	Virtual Machine & Smart Contracts
	Figure 8. Message group execution workflow during block collation.
	Figure 9. Tycho VM Sandbox and main message’s lifecycle phases: Compute and Action.

	
	Data Storage
	Serialization & Low-level Storage Optimization
	Figure 10. Tycho Node Storage System functional components.

	Shard State Storage
	State Management and Merkle Updates
	Block Data
	Figure 11. Tycho Block Storage Architecture.

	
	Scalability & Interoperability
	How Tycho Achieves Better Scalability
	Queue State Separation from Shard State
	{partition_id}{src_shard}{lt}{hash}

	High Performance Message Grouping
	Minimized Data to Validate
	Layer-2 Scaling
	Figure 12. Cross-chain contracts facilitate bi-directional transfers between TON and a Tycho-based L2 chain

	Tycho-Based Protocols and TON
	Figure 13. Tycho-TON Compatibility Assessment
	Figure 14. Application-level compatibility

	
	Network
	Figure 15. A schematic view of Tycho nodes interacting via QUIC with DHT based peer discovery.

	Benchmarking
	Top-Level Performance Measurements
	Table 1.​Reported Performance of DAG-Based Blockchain Protocols
	Figure 16. Estimated Throughput vs Finality Latency for DAG-Based Protocols

	
	Conclusion
	References

