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Abbreviations and Definitions 

Key Abbreviations 

2PC: 2Phase-Commit. 

aBFT: Asynchronous Byzantine Fault 
Tolerance. 

ADNL Abstract Data Network Layer. 

AVM Algorand Virtual Machine. 

BFT Byzantine Fault Tolerant. 

DHT Distributed Hash Table. 

DLT Distributed Ledger Technology. 

EVM Ethereum Virtual Machine. 

FPC Fast Probabilistic Consensus. 

L2 Layer-2 

LT Logical Time. 

DAG Directed Acyclic Graph. A graph 
structure with directed edges and no 
cycles. 

PoS Proof of Stake. 

PoW Proof of Work. 

TEAL Transaction Execution Approval 
Language. 

QUIC Quick UDP Internet Connection. 

RLDP Reliable Large Data Protocol. 

RPC Remote Procedure Call. 

SVM Solana Virtual Machine. 

TON The Open Network. 

TPS Transactions Per Second. 

TVM TON Virtual Machine. 

WU Work Units. 

VM Virtual Machine. A computation 
engine that executes smart contract 
code in a sandboxed environment. 

Key Definitions 
Anchor: A special point in the DAG mempool that serves as a committed reference 
after three consecutive points form an "anchor pattern." Anchors belong to the global 
DAG and enable deterministic ordering of messages. 

Bag of Cells: A collection (set) of cells. 

Cell: The fundamental data structure in Tycho. 

Continuation: an execution token in TVM that enables control flow graphs, exception 
handling, and the ability to stop and resume smart contracts. 

External Message: Messages originating from outside the blockchain network (e.g., 
user transactions) that enter through the mempool. 



 

Equivocation: The creation of alternative points at the same round by the same 
producer, which is detected and treated as a protocol violation. A “fork eventˮ is a 
close equivalent definition. 

Internal Message: Messages generated by smart contract execution that are 
processed within the blockchain network. 

Mempool: The DAG-based first stage of Tycho's 2PC consensus that provides 
collating nodes with a common set of external messages, acting as a persistent ring 
buffer. 

Point: The basic object of the mempool that carries external messages and metadata, 
essentially a vertex in a node's local DAG view. 

Work Units WU A sophisticated measurement system that evaluates block release 
time by considering message processing, dictionary operations, VM gas consumption, 
account updates, and outgoing messages to synchronize collators with the mempool.



 

Introduction 

Tycho is a novel blockchain protocol which extends core features of The Open 
Network TON by leveraging Directed Acyclic Graph DAG approach when receiving, 
processing and confirming messages inside TON. The concept of a DAG is a 
well-established construct in graph theory, defined as a directed graph with no cycles 
123. DAGs are widely applied in computer science domains such as scheduling, 
data flow analysis, and dependency resolution. In recent years, DAGs have also been 
adopted in the context of blockchain and distributed ledger technology DLT. 

Notable examples of the recent innovations in DAG-based designs include 
Bullshark[4, MYSTICETI5, and Narwhal-Tusk[6. They introduce efficient consensus 
mechanisms suitable for high-throughput and low-latency environments. 

Sequential blockchains, such as Bitcoin and Ethereum, rely on a linear chain of blocks 
that imposes fundamental constraints on transaction throughput and confirmation 
latency. These limitations arise from the requirement that blocks be appended one at a 
time, with strict ordering enforced by consensus mechanisms like proof-of-work 
PoW or proof-of-stake PoS and its derivations. As transaction volumes grow, these 
linear architectures experience performance bottlenecks and increased confirmation 
delays. 

Unlike global sequential chains, modern DAG-based protocols enable concurrent 
transaction validation and partial or asynchronous ordering, thereby enhancing 
throughput and reducing latency. Bullshark[4, MYSTICETI5, and Narwhal-Tusk[6 
etc. achieved high-performance consensus while maintaining robustness against 
faults and asynchrony. The adoption of DAG in smart contract platforms like Sui and 
Aptos underscores the shift toward scalable, production-grade distributed ledgers. 
With Tycho, TON protocol adopts DAG for the purpose of its own original 
smart-contract virtual machine. 

However, the design and analysis of DAG-based systems also introduce new 
challenges. These include transaction ordering ambiguity, consensus safety under 
concurrency, finality guarantees, and complex network behavior under adversarial 
conditions. Additionally, the lack of standardized evaluation frameworks complicates 
the comparison of protocol properties across different implementations. 

The implemented Tycho DAG mainly follows the principle “the code is specificationˮ 
and is freely available on GitHub 8 for more elaborate analysis. 



 

The Overview of DAG-based Protocols 

In this section, we describe the architectural designs of the most prominent 
DAG-based systems, focusing on their graph structure, consensus mechanism, and 
execution model. 

IOTA, Avalanche, Hashgraph 

IOTA is a DAG-based distributed ledger that replaces blocks with a transaction graph 
called the Tangle, where each transaction approves two others[9, enabling feeless, 
lightweight microtransactions. Originally dependent on a centralized Coordinator to 
prevent double-spends, IOTA's Coordicide redesign introduced a leaderless 
consensus via Fast Probabilistic Consensus FPC and a reputation metric called 
Mana, which replaced fees but relies on strong assumptions about Sybil resistance 
and user behavior[10]. While the Tangle supports parallelism, its lack of total ordering 
complicates smart contracts and yields only probabilistic finality, and FPC's 
robustness under network delays remains uncertain. Despite ecosystem growth[11], 
IOTA has faced criticism over security, liveness, and resilience in adversarial settings. 

Avalanche introduces a family of consensus protocols based on repeated subsampled 
voting over a DAG of transactions[12], where nodes query random peers to determine 
preferences and gradually converge toward consensus. This approach enables high 
throughput and fast confirmations under favorable conditions, but its probabilistic 
safety means consensus is not guaranteed under asynchrony or coordinated 
attacks[13]. The protocol requires careful parameter tuning to balance liveness and 
safety, and while Avalanche's multi-chain architecture - with the XChain for assets, 
CChain for smart contracts (using the linearized Snowman protocol), and PChain for 
validator coordination - offers flexibility, it also increases complexity and raises 
questions about cross-chain interoperability and consistency[14]. 

Hashgraph is a DAG-based consensus algorithm that uses gossip and virtual voting to 
achieve asynchronous Byzantine fault tolerance (aBFT) without blocks or mining[15]. 
Nodes create events referencing two parents - one local and one received - forming a 
DAG that preserves causality, and consensus is reached via deterministic virtual voting 
without actual message exchange[16]. While the protocol guarantees finality under full 
asynchrony with less than one-third malicious nodes, it relies on a permissioned 
governance model through a fixed set of council members, limiting decentralization. 
Additionally, it assumes all nodes have full visibility of the DAG, which may not hold 
under high churn or adversarial conditions, though it offers a theoretically robust 
consensus layer with deterministic ordering and low latency. 



 

PHANTOM, GHOSTDAG and BlockDAG 

PHANTOM is a DAG-based consensus protocol that extends Nakamoto's 
longest-chain rule by defining a total order over a blockDAG using k-cluster (kk). It 
defines a set of blocks connected to all but at most k others which are topologically 
sorted to form the ledger[17]. 

While finding a k-cluster is NP-hard problem, PHANTOM employs the GHOSTDAG 
heuristic, which selects a "blue" set of blocks based on connectivity to represent the 
honest chain, enabling higher throughput through parallelism. However, PHANTOM 
and GHOSTDAG are vulnerable to incentive attacks if miners deviate from prescribed 
transaction selection, risking reward manipulation and reduced decentralization for the 
whole network[18]. Building on GHOSTDAG, the BlockDAG platform integrates UTXO 
and account-based models, allowing smart contracts and traditional transactions to 
coexist with a bridging mechanism between them[19]. While this hybrid architecture 
improves flexibility and throughput, it introduces complexity in maintaining consistency 
and requires further analysis to ensure security, double-spend resistance, and 
performance under adversarial conditions. 

Mysticeti - Leaderless BFT with a DAG 

Mysticeti is a DAG-based consensus protocol that achieves deterministic finality in 
partially synchronous networks without a fixed leader[5. It allows all nodes to propose 
blocks concurrently by organizing proposals into a DAG, where each proposal links to 
earlier ones, forming a proposer graph. Consensus is reached by identifying 
"committable" proposals through quorum intersection and acknowledgment 
accumulation, enabling agreement without leader rotation or slashing. The protocol 
guarantees safety and liveness under the stake-weighted BFT assumption and does 
not rely on randomness or probabilistic finality. While Mysticeti avoids equivocation 
and improves parallelism, it assumes a fixed validator set, and its applicability to 
dynamic or permissionless environments remains an open question, along with the 
added complexity of tracking proposals and evaluating commit rules. 

Execution-layer DAGs and Non-ledger DAG Usage 

Certain blockchain platforms, including Sui and Aptos, make internal use of DAG 
structures to improve execution-layer parallelism. These systems employ consensus 
protocols such as Bullshark[4, which leverage DAGs to decouple data dissemination 
from consensus, but do not expose a DAG-based ledger structure to end-users. 
Instead, DAGs serve as auxiliary tools for transaction scheduling and execution 
ordering within otherwise traditional BFT frameworks[20]21]. 



 

In both Sui and Aptos, transaction dependencies are modeled as causal DAGs to 
enable speculative parallel execution. However, global ordering and state finality are 
achieved via consensus mechanisms that produce linear ordered chains. 

The systems reviewed in this section demonstrate the diversity of architectural 
approaches to DAG-based consensus. While some protocols adopt DAGs as the core 
structure for global ordering and transaction validation, others utilize them locally to 
optimize execution-layer concurrency. These differences highlight a broad design 
space in which trade-offs arise between performance, consistency, security, and 
implementation complexity. 

The Overview of Smart-Contract Virtual Machines 

Tychoʼs Virtual Machine VM implemented ideas initially proposed for TON VM and 
therefore significantly different to any existing protocol. The VM's advantages stem 
from both its underlying TVM architecture and design choices, and Tycho's specific 
optimizations for parallel blockchain execution which is different to any known to date 
smart-contract platform. In the present section we give a brief overview of the most 
popular VMs. 

The Ethereum Virtual Machine, initially proposed in 2015 to overcome the limitations of 
the Bitcoin Script, has been a long-standing leader in setting common standards for 
smart contract developers. It has successfully abstracted away the complexity of the 
computation engine from the process of building sophisticated smart contract systems 
that compile to Ethereum's instruction set. The share of developers working in 
Ethereum ecosystem (#1 across the globe 22 exposes it as the clear winner in terms 
of adoption of a programmable blockchain platform if compared to its predecessor 
Bitcoin. 

As the first mover in terms of shaping the “Smart contract Virtual Machineˮ concept, 
the EVM must have addressed some fundamental problems. Due to the halting 
problem, the EVM needed variable gas costs to meter the execution of smart contracts 
with cycles as they go. Other key characteristics of EVM include: a 1024-depth stack 
for operands, 256-bit word size, and the stack architecture which means instructions 
push/pop values on a LIFO stack for operations(e.g. an ADD pops two numbers and 
pushes the sum). EVM is single-threaded globally and consequently has performance 
limitations which may be addressed via adding different computational layers on top of 
the base layer. Despite that, it is now the de facto standard for many Layer-1 and 
Layer-2 L2 chains. 



 

Figure 1. Types and flavors of purpose-built virtual machines for smart 
contracts and blockchain protocols. 

Such lesser-known projects as Tezos – Michelson Stack VM for Formal Verification) 
and NeoVM seem to be underrepresented in the literature. Whereas having their own 
distinctive features, both VMs make an attempt to guarantee EVM compatibility as 
reported by the documentation 2324. Similarly to Bitcoin Script, Michelson operates 
as a stack machine. it has no variables, only a stack that instructions manipulate. The 
Tezos VM interprets Michelson opcodes in sequence, modifying the stack. The 



 

execution model of NeoVM is explicitly stack-based, too. However, it has multiple 
stacks, which makes it fairly different to other solutions. The NeoVM operates with an 
Evaluation Stack for operands and results; an Invocation Stack for managing call 
frames (each contract call or function call pushes a new execution context on the 
invocation stack); and a Result Stack for returning results. Neo is not reflected by the 
Electric Capital Developer Report 2024 22 which indicates its low adoption or 
potentially very closed community. 

Algorand #32 follows Tezos #30 in the 2024 developer rank 22 but its consensus 
and virtual machine design attracted the researcher's continuous attention since 2016 
25 when it was initially proposed. The Algorand Virtual Machine AVM runs 
programs written in TEAL Transaction Execution Approval Language). Bartoletti et all 
26 demonstrated an application of developed declarative smart contract language 
for formal verification of fundamental properties of the underlying blockchain protocol. 
A higher-level PyTeal library for constructing TEAL scripts is also mentioned by the 
authors. The AVM runs these instructions sequentially in a stack. It closely resembles 
a simplified Forth-like VM. TEAL opcodes cover arithmetic, logic, crypto (hash, 
signature verification), flow control, and state access (reading/writing local or global 
state). Algorand continues to evolve the AVM (currently documentation suggests v9 
version as the most recent). 

The Move VM was developed for Facebook's Libra and evolved into Aptos and Sui 
networks. The distinctive feature of the Move Smart Contract language became a 
top-down design with a strong focus on security and safety. A group of researchers 
introduced a new smart contract VM tailored to a resource-oriented programming 
model 27 and later proposed tooling for easy proving of developed smart contracts 
which may be facilitated along with testing them 28. The Move VM guarantees that 1 
coin in a resource variable will never be duplicated or lost. By analyzing which 
resources a transaction touches, the executor can run multiple Move transactions in 
parallel. 

The Solana VM SVM is the first VM that attempted to widely adopt a hostʼs runtime 
environment for parallel execution of smart contracts in a blockchain protocol aimed to 
achieve maximally possible throughput and lowest latency. Solana uses a unique 
execution environment designed for massive parallelism. "Programs" on Solana are 
written in Rust (or C/C, compiled to Berkeley Packet Filter BPF bytecode, and 
executed by Solana's BPF interpreter or JIT on-chain. A similar approach but applied 
to IoT 29 demonstrated the substantial benefits of register-based VM over WASM's 
stack-based design. Inside Solana's VM, thousands of contracts BPF programs) could 
run in parallel across the validator's CPU cores with little overhead to the validator 
node. According to Zandberg and Baccelli 29, the BPF VM design required only 10% 



 

more memory for running an application in the VM than running it directly on the 
microcontroller without VM. 

DAG Consensus & Collator 
Initial design of the TON consensus considered non-guaranteed deliverability and 
processing of messages by nodes along with block production. Tycho preserves 
non-guaranteed deliverability as a design principle for increased throughput while 
addressing internal availability via introduction of 2-phase-commit 2PC approach to 
message processing and transaction settlement. The important place in the 
architecture belongs to DAG topological structure remotely resembling the Unspent 
Transaction Output design approach. 

Tycho’s 2-Phase-Commit 

The introduction of Tycho DAG and its implementation in Rust followed a 
re-implementation of Catchain (short for Catch-Chain 30 in Rust. This is a Byzantine 
Fault Tolerant BFT protocol designed for asynchronous block production and 
finalization in a decentralized validator set in the presence of network delays or 
malicious nodes. It was originally proposed for The Telegram Open Network (currently 
The Open Network 31 by N. Durov 31. It ensures that all honest validators agree on 
the same block history, aiming to get a stake-weighted majority of signatures for a 
block through stages of proposing and voting. Although the whitepaper 31 mentions 
potential utilization of DAG topology with regard to Shard state or generally any 
abstract cell tree representations, early implementation did not introduce it. Therefore 
no deduplication of external messages before execution took place and the consensus 
layer relied solely on replay protection in smart contracts; also no guarantees were 
made on external messages delivery. Thus, Tycho may be seen as an implementation 
of very early ideas envisioned for TON, with more specifics applied due to acquired 
experience. 

In the proposed two-stage approach, a pending external message first enters the 
Mempool, which is structured as a DAG, and may be processed by the Collator. 
Previous works, Googleʼs Spanner 32, Narwhal/Tusk 6, and the openCBDC project 
33 highlighted the benefits of two-phase commit 2PC, despite differences in the 
implementation details of each protocol. It is important that in the openCBDC Project 
Hamilton) initiative, the authors implemented and evaluated two alternative 
architectures: the atomizer architecture and the 2PC architecture. They concluded that 
while the atomizer provides a globally ordered history of transactions, it suffers from 
limited throughput. The 2PC architecture, by contrast, achieved near-linear scalability 



 

in peak throughput with additional resources, but it did not preserve a globally ordered 
list of transactions. Similarly to openCBDC, the Tycho DAG adopts a localized view of 
transaction history, enabling parallel execution of non-conflicting chains of messages 
that trigger smart contract execution. 

Mempool 

The purpose of the DAG-based “Mempoolˮ in Tycho is to provide collating nodes with 
a common set of external messages. In very general terms, it acts as a persistent ring 
buffer with a short lifespan of the containing data, as opposed to collated blocks, and 
serves as a distributed merger of iterators over external message queues kept in every 
collating node until they become a part of DAG. This section provides some details 
about DAG inner workings.  

 

Figure 2. local DAG of point references viewed by node B at round 6; global 
sub-DAG is determined by points C3-C5 where C3 is an anchor; B6 is a source 

vertex and round 1 contains sink vertices pic source. 

We begin with defining a "point" as the basic object of the mempool that carries 
external messages and metadata. It is essentially a vertex in a node's local DAG, but it 
is not necessarily included in the global DAG yet which is a result of their intersections. 
Every node builds its local view of DAG according to the references to the previous 
round specified in each received point. The requirement for nodes to agree if some 
point becomes a part of the global DAG demands a consensus-like algorithm.  

Each node produces a new point during every broadcast round, provided it hasn't 
fallen behind the majority of nodes. After broadcasting each point, a node requests 
signatures from other nodes. Each signature serves as a guarantee of the point's 

https://excalidraw.com/#json=TMXBt4hFl4G5mUYqL3uMf,AjMYdfseq-JjH9h7XgwNFg


 

validity, persistence, availability, and referenceability. Nodes will only sign points from 
their current round or the immediately previous round. When the majority completes 
one round and begins the next, lagging nodes abandon the previous round and 
advance directly to the current one, since there's no benefit to producing points for 
outdated rounds. 

When a node has signed a point from the previous round, it must explicitly reference 
that point in any new point it creates for the current or the next round. Additionally, 
every point must reference the majority of points from the previous round. For points 
from two rounds prior, a node references only those it has previously signed but not 
yet directly referenced. 

 

Figure 3. If nodes sign only the current broadcasting round, then in the 
absence of the unreliable minority consensus may stall, because some nodes 
may have accumulated enough signatures and references to advance their 

round while the others haven’t. pic source. 

Gaps may appear in the sequence of points when a non-malicious node joins 
mid-session. In such cases, the absence of signatures is permissible. However, when 
a node creates points in two consecutive rounds, the later point must include 
signatures for the previous one, or it will be invalid. Consequently, nodes must skip at 
least one round when they cannot include the required signatures. 

Each skipped round represents a failure to fulfill the requirement of referencing a 
signed point. Other nodes will detect this behavior through DAG path analysis (along 
with ignored signature requests), increasing the lagging node's likelihood of being 
classified as unreliable or malicious. 

A majority of signatures also ensures the uniqueness of signed points: within a single 
slot (defined by producer node and round), only one point can obtain it. However, 
point equivocation, i.e. when alternative points coexist in a single slot, can be 
referenced by different points from distinct slots, each of which may acquire majority 

https://excalidraw.com/#json=TMXBt4hFl4G5mUYqL3uMf,AjMYdfseq-JjH9h7XgwNFg


 

signatures. The protocol will detect and treat equivocation patterns as violations of 
consensus and corresponding penalty will follow. 

The consensus mechanism considers only quorum nodes and is not stake-weighted. A 
full quorum consists of 3F1 nodes, where at most F nodes may be Byzantine 
(exhibiting arbitrary behavior), while 2F1 nodes are expected to be reliable. This 
approach guarantees that within a few rounds, any point will have a path to the first of 
two consecutive points through quorum intersection. On the Figure 4 if a point at 
round 1 is signed by 2F1 nodes, then at least 1F1 points (because 1F among 2F1 
may be byzantine) will reference it directly at round 3 (a point may be signed as from 
previous round only), so any point at round 4 will have a path to it (due to mandatory 
2F1 references from previous round). If a point at round 2 exists to carry those 2F1 
signatures, it is a marker of the described pattern.  

 

Figure 4. Quorum intersection. pic source. 

Since any point may represent an equivocation, three consecutive points provide a 
guarantee: the first point is uniquely referenced through the second, and the second 
will be referenced by any subsequent point. These three consecutive points form the 
so-called "anchor pattern," where the first point serves as an anchor that belongs to 
the global DAG along with all its references. The guaranteed path existence enables 
anchors from every fourth round to form a reproducible chain at any node, allowing 
lagging nodes to synchronize. 

Every four rounds, a random node is selected as the leader. When that node produces 
three consecutive points, the resulting anchor is committed to the DAG. This means at 
least a majority of nodes observe a common sub-DAG and traverse it identically to 

https://excalidraw.com/#json=TMXBt4hFl4G5mUYqL3uMf,AjMYdfseq-JjH9h7XgwNFg


 

establish a consistent ordering of referenced points while preserving the historical 
sequence of rounds. A commit represents an irreversible state change that defines the 
data passed from the mempool to the collator, or change from the 1st phase to the 
2nd.  

External messages are extracted from each ordered point and must undergo 
deduplication which is done using a sliding window of rounds in a dedicated structure. 
Duplicates may happen because validators notify their closest neighbors about new 
external messages before they reach the mempool, resulting in redundant data that 
occupies part of the mempool's throughput to ensure reliable delivery. 

 

Figure 5. Illustration of sliding window of rounds carried out by 
Deduplicator. 

However, the Collator receives deduplicated and ordered external messages uniquely 
identified by the anchor round. Setting aside the Collator's internal workings for now, it 
ultimately produces identical blocks on every node because collation is deterministic 
and the input data remains consistent across at least a majority of nodes. Each signed 
master block contains the same last processed anchor ID, which is reported back to 
the mempool. In turn, the mempool cannot initiate rounds significantly beyond this 
anchor value. This feedback mechanism ensures the mempool broadcasts at rounds 
below a certain threshold, enabling seamless validator set changes that are planned 
for and executed at that designated round. 

The DAG consensus configuration changes are possible but it requires a mempool 
restart (without restarting the entire node) because point validation rules change in 
incompatible ways. The new DAG is initialized with a newly generated common 
genesis point, and the state machines resume operation from scratch. 

Collator 

The previously described DAG-based “mempoolˮ manages the first stage of the two 
stage message commitment. In the second stage Collator creates new blocks and 
simultaneously conducts higher level computations (see Figure 6. While the DAG layer 



 

does not execute transactions directly, the Collator is a system component that 
collects external and internal messages, processes them according to their logical 
timestamps, and forms execution batches (blocks). It acts as the orchestrator, 
preparing input data for execution of smart contracts in the Executor and ensuring that 
messages are processed deterministically. The collator also assembles blocks and 
notifies the DAG layer in a feedback loop with the last processed anchors, blockchain 
config changes, etc. 

Figure 6. The Tycho Collator and its workflow. 

 



 

The diagram on Figure 6 demonstrates the main stages of the block collation process 
which results in a new block. At the beginning collator reads available internal 
messages and receives new external messages from the Mempool. It groups 
messages for execution in such a way that maximizes the number of concurrently 
executed transactions, the Virtual Machine instances execute these messages on 
multiple accounts, the Collator saves transactions, changes account states and 
collects new internal messages produced as a result of executed smart contracts. 
While computational and size limits of the block are not reached, the Collator repeats 
the cycle of reading, grouping and executing messages.  

Block limits include two main variables which indirectly limit its size in bytes/bits: 

● Gas usage (for transaction execution); 

● Logical time LT delta. 

The Collator terminates the current block construction process when one of these 
thresholds is reached. Limiting block size is not considered as a priority in Tycho 
because this constraint may implicitly follow other constraints such as amount of 
accounts to be processed or number of transactions or external messages to collate.   

The current Collator configuration implementation adopts the same model as TON, 
maintaining so-called soft and hard limit definitions in the config. However, the current 
system virtually disables hard limits, eliminating the rigid internal-then-external 
message prioritization. This streamlined approach allows continuous block collation 
until any hard limit is reached, removing the need for soft/hard limit distinctions in 
practical operation. 

On the final stage the Collator forms an updated state, computes a Мerkle update and 
finalizes a new block candidate, which combines various data and pointers: 

● The block data (transactions, state updates, etc.); 

● Reference to the masterchain seqno; 

● Indication of whether it's a key block; 

● Previous block IDs; 

● Top shard block IDs; 

● Value flow information; 

● Queue diff information. 



 

Since the first level commitment (via consensus) at the mempool level guarantees the 
order of external messages that the collator receives, and message grouping for 
execution is performed strictly deterministically, all nodes participating in consensus 
must produce absolutely identical blocks. 

This block candidate can then be validated and, if valid, added to the blockchain. 
During the validation process network nodes exchange signatures of the issued block 
among themselves and once ⅔1 signatures are accumulated by the weight of the 
stack, the Collator considers the block valid. If a node fails validation, then it begins 
synchronization and the collator will receive a valid block issued by the majority of 
other nodes. It will not be the same as the nodeʼs own block to be released. The 
collator cancels the current active collation of the next block, deletes the incorrect 
block and all uncommitted changes, loads the correct state from the database and 
continues working from this state. 

For validation purposes, nodes exchange minimal data between themselves: a node's 
public key and a signature of the block's root cell hash. Each node uses the hash of its 
own next produced block to verify another's signature. This way nodes do not 
broadcast the actual blocks over the network. The exchange of signatures is 
performed very quickly over the network. However, if a node has not performed block 
collation, then it doesn't have the source data to verify the signature. It forces network 
participants to join the second stage commitment and include messages into blocks 
deterministically. 

Deterministic execution of messages during collation requires certain rules and 
constraints which provide deterministic ordering. The execution ambiguity must be 
prevented, and the consistent state transitions across all validator nodes must be 
achieved. 

Therefore, messages within a contract must execute in strict logical time hash order, 
ensured through outbound message logical time rules and message selection rules. 

Outbound message LT rules consist of: 

● Rule LTM₁ > LTM₀, which means that sequential messages M₁ and M₀ from 
contract A maintain monotonic logical time ordering. 

● Rule of block-level ordering, which means that messages in block B1 have 
higher LT than in block B0. 

Additional message selection rules include: 



 

● Sorting by ascending logical time hash per recipient account for queued 
messages in the buffer. 

● Strict logical time hash ordering for execution groups. 

● Ordered execution in cohorts and guaranteed temporal precedence in separate 
buffers. 

Resolution of co-dependent states is especially important. For them a “Triangle 
Constraintˮ ensures a specific order of interdependent state transitions. Letʼs consider 
a situation when contract A simultaneously sends message M1 to B and message M2 
to C, and B's execution of M1 generates another (internal) message M3 to C. Then 
according to this constraint, C must process message M2 before message M3 Figure 
7. 

 

Figure 7. An Illustration of “Triangle constraint” rune for interdependent 
contracts with simultaneous calls. 

The сonstraint is implemented as follows: M1 and M2 enter a set S1. Message M3 
enters the subsequent set, ensuring M2 executes first regardless of whether 
processing occurs within the same block or across blocks. Cross-block scenarios 
maintain ordering through queue precedence over new message sets. 

On the final note, Collator also implements a set of technical decisions which help to 
improve its performance and protect from denial of service type failures while working 
together with the DAG layer. These include: 



 

● Isolation of large internal messages queues into dedicated partitions; 

● Separating queue state from shard state using minimalist structures for state 
storage and diff exchange; 

● Maximizing parallel transaction execution in the VM through efficient message 
buffering and grouping; 

● Minimizing bandwidth requirements for peer-to-peer connections; 

● Implementing parallel Merkle update computation and shard state change 
persistence (see Data Storage section). 

The low level technical implementation of the Collator follows the principle of 
maximally possible parallelization of operations. This principle adds up to outlined 
architectural decisions specifically relevant to blockchain protocol that aims to be 
highly performant. 

Work Units 

To produce identical blocks on the same block height synchronously, all nodes should 
have ordered external messages incoming from the DAG mempool. Their collators 
must have an identical set of both anchors and (external) messages. Work units 
provide a feedback mechanism for collators to keep up with network conditions. 
However, letʼs consider first the challenges arising from the requirement for all nodes 
of the network to have identical sets of anchors and external messages in more detail. 

The timing of anchor and block processing creates significant synchronization 
challenges in distributed blockchain systems. Since different nodes experience 
varying delays when receiving anchors and releasing blocks, it's impossible to import 
anchors based on system time without risking nodes desynchronization in the 
network. While releasing an anchor in the mempool typically takes 10001200 ms 
compared to the much faster 400 ms block release time, importing anchors before 
every block would result in unnecessary 600 ms delays. However, implementing a 
fixed interval approach (such as importing anchors every N blocks) proves equally 
problematic - for instance, importing every 3 blocks at 500 ms intervals 1500 ms 
total) would lag behind the 1200 ms anchor release cycle, causing the collator to fall 
behind the mempool. This lag increases the time difference between when externals 
enter the mempool and when they're processed, degrading network latency for users 
and causing DAG size growth. The situation becomes critical when the mempool 
pauses after exceeding the maximum allowable lag threshold relative to processed 
anchors: if the last processed anchor A is A1 while the last imported is A218, and 



 

the mempool pauses at round R221 (with a 220-lag limit), the collator's request for 
the next anchor after A218 will cause a complete network deadlock since the paused 
mempool cannot provide anchor A222. 

To synchronize with the mempool, the collator evaluates the time spent on block 
release in units called Work Units WU. The WU calculation formula takes into account 
the number of read messages, the number of dictionary operations, gas consumed in 
the VM, the number of updated accounts, outgoing messages, etc. The coefficients 
used in the formula are specified in the network configuration. This way, each node 
evaluates block release time in WU identically, regardless of the actual time spent. The 
network configuration also sets an estimated average time for releasing one anchor 
measured in WU. As a result, if there is increasing load and the accumulated amount 
of WUʼs during the release of previous blocks exceeds what's necessary for releasing 
one anchor, the collator imports an anchor before the next collation. If enough WUʼs 
have accumulated for N anchors, then N anchors are imported at once. This way, all 
nodes will deterministically import the next anchor after the same block at height 
seqno. 

Currently, the WU calculation coefficients are set manually based on conducting 
numerous network tests under various loads. The formula isn't perfect, so estimation 
accuracy may change if the load profile changes. If the estimation is inaccurate, the 
collator may still "idle" or lag behind. Therefore, it's necessary to implement 
functionality for adjusting WU calculation parameters based on consensus between 
nodes. 

Each node, when importing an anchor, determines whether the collator lags behind the 
mempool by checking if the anchor waiting time falls within a specified range. If a 
node regularly makes errors in estimating block release time in WU, it "votes" for 
parameter adjustment. Votes are sent as special external messages on behalf of nodes 
to a special contract that, upon reaching quorum, performs WU parameter adjustment 
in the network configuration. This way, automatic adjustment of WU calculation 
parameters will occur to keep the collator synchronized with the mempool. 

However, the problem of possible node hanging when the collator requests the next 
anchor remains unaddressed. To resolve the issue, the collator obtains the current last 
processed anchor from the previous master block. Then it compares the last 
processed anchor with the last imported one. If the last imported anchor exceeds the 
last processed one by ⅔ of the maximum allowable lag 146 rounds), the collator 
stops importing anchors to clear accumulated externals and move the boundary of the 
last processed anchor. This way, the last imported anchor will never be higher than ⅔ 
of the allowable lag, meaning the collator canʼt be hanging on anchor import 
permanently. 



 

While traditional blockchains like Ethereum use gas limits primarily to constrain 
transaction execution within blocks, Tycho's Work Unit system serves as a 
multi-dimensional synchronization mechanism that accounts for message processing, 
dictionary operations, VM gas consumption, account updates, and outgoing messages 
to deterministically estimate block release time across all nodes. This approach 
transforms the static gas limit into a dynamic feedback system that enables precise 
mempool synchronization, ensuring all collators maintain identical anchor import 
timing regardless of hardware variations. By incorporating automatic parameter 
adjustment through consensus-based voting, Work Units effectively solve the 
distributed timing challenges that simple gas limits cannot address, making them a 
more advanced and adaptive version of the fundamental resource constraint 
mechanisms that govern blockchain block production.  



 

Virtual Machine & Smart Contracts 

The Tychoʼs Virtual Machine follows major principles outlined across the whole TON 
whitepaper document. A potential better outcome for interoperability between different 
networks that have adopted flavors of TVM is an important feature to consider here. 
The original principles turned out to be general enough to allow customization of 
popular Solidity smart-contract language to TVM and its step-by-step improvement. A 
reference implementation of Tycho VM and so-called Executor are open source and 
available on GitHub 3435. The original TON VM whitepaper does not mention more 
practical aspects of the TVM which are rather important for application developers and 
may not exist in other VMs. The present section of Litepaper attempts to fill this gap 
and sheds light on how smart-contracts work in Tycho at the nodeʼs level.  

The protocol diagram on Figure 8 depicts the relation between Collator and Executor 
during execution of the message group, and suggests it as part of the Collator. The 
Executor is a pure function-like component that applies transactions to the system 
state. Given the input parameters (for example, account states and external 
messages), it produces a new account state and transaction results. In the present 
document, the Collator section mentions the Executor as part of general message 
processing that consists of different phases.  

 

Figure 8. Message group execution workflow during block collation. 

It handles various types of transactions. These are:  



 

● normal account messages with data and smart-contracts, 

● special transactions which create new assets and recover transactions,  

● tick/tock transactions that execute system transactions for fundamental 
addresses, 

It also converts results into new messages for the output queue of the smart contract.  

The Executor initializes during the so-called Prepare phase with blockchain 
configuration and executor parameters. This way it enforces rules like gas limits and 
validity checks. During the Execution phase, it processes messages in sequence: 
“tick-ˮ transactions, special transactions, then regular message groups, and then 
“-tockˮ transactions. Importantly, the executor launches the virtual machine when 
needed and parses its results. 

 

Figure 9. Tycho VM Sandbox and main message’s lifecycle phases: Compute and 
Action. 

On Figure 9, the Executor wraps the Tycho Virtual Machine which reflects an actual 
architectural decision: hundreds and thousands of TVM instances, or “sandboxes ,ˮ 
could run in parallel and carry smart contracts through different phases, most 



 

importantly Compute and Action phase. Besides, an ordinary transaction flow includes 
the Credit phase, Storage phase, and Bounce Phase (mentioned in the opcodes 
section of the whitepaper 31 but only Compute and Action phases are practically 
relevant to Tycho VM. On the scheme, they are shown as the most crucial during the 
execution of the smart contract. The ˮExecutorˮ manages all other phases, too. 

The VM operates strictly on the stack and registers as inputs and produces an 
updated stack, exit codes, and possible register modifications for the Action phase 
(see Figure 9. The VM executes the actual bytecode of smart contracts, but it does 
not manage account balances or message flows directly, because of its sandboxed 
environment. These responsibilities remain with the Executor that manages invocation 
of VM via vm.run() during the Compute phase. 

The Compute Phase is the only stage where the TVM executes the smart contract 
code invoked by a message containing a bag of cells. All internal computations occur 
during this phase which are not involving other contracts states. However, the contract 
may invoke libraries provided by the Executor which are stateless smart contracts. The 
Compute Phase is deterministic because it involves underlying deterministic structures 
(cells), its result depends on the input data and the current state of the smart contract. 
If an exception occurs during the Compute Phase (e.g., due to out-of-gas errors), the 
entire transaction is aborted, and the Action Phase does not start. At the end of this 
phase, the TVM prepares a set of "output actions" for dispatch during the Action 
Phase. Besides exceptions that may occur as a result of smart-contract 
implementation errors, TVM also supports stopping and resuming smart-contracts via 
Continuations. In the TVM, they are first-class citizens and an equivalent to execution 
tokens, thanks to deterministic cells. They enable control flow graphs, and participate 
in exception handling of a smart contract. 

In the Action Phase, the Executor dispatches output messages created during the 
Compute Phase. These actions may include calling other smart contracts within the 
blockchain network or leading to various outcomes such as token transfers and state 
changes of the receiving contract, and code change of the contract that just finished 
the Compute Phase. However, the actual state changes only occur if the Action Phase 
is successfully completed. 

Tycho's Virtual Machine architecture represents an implementation of original TON VM 
principles 36 with practical enhancements for high-performance blockchain 
execution. The separation of concerns between the Executor and TVM creates a 
robust framework where the sandboxed virtual machine focuses purely on 
deterministic computation while the Executor manages the broader transaction 
lifecycle and system interactions. 



 

Most importantly, the architecture's support for parallel execution of TVM instances 
positions Tycho to handle the demanding throughput requirements of modern 
blockchain applications.  

 

 



 

Data Storage 

All previously described architectural components, namely DAG mempool, Collator and 
Executor rely on a sophisticated multi-layered storage architecture (see diagram on 
Figure 10 that ensures persistence and high throughput of dependent sub-systems. 
The storage system is organized into several distinct RocksDB databases that serve 
different purposes: 

● Base DB stores core blockchain data including blocks, states, cells, and 
archives; 

● RPC DB stores transaction and account data optimized for RPC queries; 

● Mempool DB stores DAG-related data like points and their statuses. 

This way, the storage system creates multiple database instances with resource 
partitioning to avoid contention between different workloads. The storage system 
implements intelligent memory allocation based on available system memory. It 
calculates memory usage for various components and distributes the remaining 
memory between the cells cache and RocksDB LRU cache. 

Serialization & Low-level Storage Optimization 

At the low level, Tycho nodes store all data in a collection of cells, similar to the TON 
VM architecture. This collection is called a "bag of cells," which is, mathematically, a 
set that prevents cell duplication. This design transforms the main paradigm of 
"everything is a value" from the TVM whitepaper 31, 36 into an "everything is a cell" 
principle, supporting a flexible type system and more compact serialization formats. 
Each cell is a binary structure that can carry up to 1023 bits of data and up to 4 
references to other cells. These cells can form deterministic DAG structures, which 
enable the construction of Merkle trees and support reference counting. 

The system implements deduplication at multiple levels through a specialized cell 
database. At runtime, cells with identical hashes point to the same physical memory 
location, with lazy loading ensuring that entire trees aren't loaded until accessed. The 
underlying RocksDB storage maintains mappings of hash - > (refcount, child_hashes, 
data), where reference counting is crucial since individual cells can appear multiple 
times across the entire DAG. 



 

 

Figure 10. Tycho Node Storage System functional components. 

As part of the Shard State Storage inside Base DB, the cells column family receives the 
most sophisticated optimization as it stores the core Merkle tree data. The hash-based 
memtable with buckets eliminates the insertion overhead of maintaining sorted order 
during the high-frequency cell write operations, while the large memtables with 
buffers provide substantial write buffering to reduce flush frequency and maintain 
consistent write performance. The 5-level LSM tree structure is specifically tuned for 
the large-scale dataset typical of blockchain cell storage, providing efficient 
compaction strategies that balance read and write amplification. Bloom filters offer 
high-precision negative lookups, crucial for quickly determining cell existence without 
expensive disk seeks, while direct I/O bypasses the kernel page cache to prevent 
double-buffering and gives RocksDB full control over memory allocation. Finally, 
compact-on-deletion ensures immediate space reclamation during garbage collection 
operations, preventing the accumulation of tombstones that would otherwise degrade 
read performance and storage efficiency. This is a critical consideration given the 
frequent state cleanup operations inherent in blockchain node operation. 



 

Shard State Storage 

The Shard State Storage in Tycho manages blockchain state data in coordination with 
block storage. Most importantly it contains the core storage for individual state cells 
with sophisticated optimization mentioned in the previous section. An auxiliary 
Temporary Cells table is used during state processing for intermediate cell storage.  

Shard States Table connects to the Block storage via mapping BlockId to the root cell 
hash of the shard. The Block Handle Storage, a sub-component of the Block Storage, 
tracks state availability flags and ensures proper sequencing of block processing and 
state computation before feeding it into Shard States. The system implements 
coordinated garbage collection that removes outdated states while preserving 
referenced cells through atomic reference counting, maintaining storage efficiency as 
the blockchain grows. 

The system maintains separation of concerns from block storage while sharing the 
same database infrastructure, allowing both systems to operate efficiently within the 
same node instance. 

State Management and Merkle Updates 

The Collator and its components facilitate state change for the whole Tycho protocol 
using several key data structures: 

● WorkingState that contains the complete context including the usage tree, 
master chain data, and previous shard data; 

● PrevData which encapsulates both observable states (with usage tracking) and 
pure states (original states); 

● ActualState which is Core state maintained throughout all collation phases. 

Block processing involves Merkle updates containing virtualized old ActualState) and 
new states WorkingState), where unchanged cells are pruned to retain only their 
hashes. When applying a new block, the system performs a depth-first traversal from 
the root, stopping when encountering existing cells. All traversed cells have their 
reference counts incremented by one, with all key-value pairs written to RocksDB in a 
single transaction using merge operators. 

Previous states undergo garbage collection through similar traversal, decrementing 
reference counts. RocksDB's compaction filter removes cells with zero reference 
counts. The system addresses performance challenges through parallel graph 



 

traversal for large states and optimized I/O operations. However, state update 
complexity scales as O(updates × log₂(state_size)), creating throughput limitations  
depending on the amount of active accounts. 

State sharding presents another challenge. While reducing individual shard update 
sizes through independent processing (log₂(size/n)), physical separation into different 
databases eliminates deduplication benefits, potentially doubling storage 
requirements. Future optimizations include implementing cuckoo maps for faster cell 
existence checks and developing custom databases optimized for hashmap 
operations with counter increments and write-ahead logging. 

Previously described Work units WUs system help to coordinate the state 
management system  by means of measurement of computational resource 
consumption across different phases of block collation. This includes tracking work 
units for message preparation, execution, and finalization phases. The work unit 
tracking feeds into the state management system by updating the field in the new 
observable state, providing feedback for future collation attempts and resource 
management. 

Block Data 

Tycho's block storage system implements a multi-tiered architecture that balances 
performance, storage efficiency, and data availability. Unlike simpler blockchain 
implementations that store blocks in flat file systems (for example Bitcoin's) or basic 
key-value stores, Tycho employs a comprehensive caching hierarchy with TTL-based 
in-memory caches, immediate package storage for critical block components, and 
intelligent data splitting for large blocks. This design mirrors and extends TON's 
storage philosophy but introduces more granular control over data lifecycle 
management and enhanced compression strategies optimized for different data types. 



 

 

Figure 11. Tycho Block Storage Architecture. 

The protocol implements a three-tier storage model consisting of hot in-memory 
caches, warm package storage, and cold compressed archives Figure 11. Recent 
blocks remain in fast-access storage with full metadata availability, while older blocks 
are progressively moved to ZSTD-compressed archives organized as sequential 
chunks with configurable size limits. This archival approach significantly reduces 
storage overhead compared to traditional blockchain nodes that maintain all historical 
data in uniform format. The block handle system provides efficient metadata tracking 
through bit flags that indicate data availability status. There is no distinction whether 
block data, computed state, proofs, or queue diffs are stored, thus enabling nodes to 
quickly determine what information is accessible without expensive disk operations. 

Tycho's block storage tightly integrates with its sophisticated shard state storage 
system. This integration allows for efficient state transitions where new blocks can 
reference existing Merkle tree cells from previous states, similar to TON's approach 
but with enhanced garbage collection mechanisms. The system implements a 
three-tier garbage collection architecture that independently manages blocks, states, 
and archives, ensuring optimal storage utilization while maintaining data integrity and 
availability guarantees for active network participants. 

The storage system incorporates several advanced optimization techniques that 
distinguish it from conventional blockchain architectures. Extensive use of Bloom 



 

filters optimizes memory usage for cell lookups, while hash-based indexing enables 
efficient point lookups and binary search indexing supports range queries. The system 
implements adaptive write optimization with pipelined writes and rate limiting with 
auto-tuning capabilities. Unlike TON's more uniform compression approach, Tycho 
employs differentiated compression strategies. It leverages ZSTD compression for 
compressible transaction and metadata and no compression for already-compressed 
archives and cell data. For values exceeding 32KB thresholds it uses specialized blob 
storage. These measures altogether ensure optimal storage efficiency across diverse 
data types while maintaining high-performance access patterns for active network 
operations. 

 



 

Scalability & Interoperability 

How Tycho Achieves Better Scalability 

Queue State Separation from Shard State 

The Tycho follows a principle of smart-contract state organization which includes 
storing the output message queue of the related account as it was mentioned in TON 
Whitepaper (sections 2.3.20, 2.4.7 in 31. The approach that was chosen for 
implementation in TON allows storing the outgoing queue as a hashmap within the 
shard state. But when queues become large, these hashmaps grow significantly, 
causing noticeable slowdowns in both queue operations and overall state 
management. Tycho solves this by separating outgoing queues entirely from the shard 
state and storing them directly in the RocksDB table ordered by logical time hash with 
the key structure: 

{partition_id}{src_shard}{lt}{hash} 

This approach provides several advantages: 

● Faster reading and parsing. Messages with metadata are serialized and stored 
entirely in binary form, rather than requiring cell tree traversal 

● Efficient filtering. Only the first few bits need to be read to check recipient 
addresses without full message parsing. 

● Linear queues are significantly faster to read, trim from the bottom, and 
append to the top compared to hashmap operations. 

● Optimized iteration. RocksDB iterators enable sequential reading of outgoing 
messages from source shards within specified logical time hash ranges. 

● Removing large queue hashmaps from shard state improves state 
management performance. 

The use of queue diffs for state changes is equally important - containing pre-ordered 
new messages that were created but not executed during block collation, along with 
processing boundaries. Peer nodes exchange queue diffs without messages content 
which saves on bandwidth and traffic. During synchronization, the node that catches 
up with the network, syncs only the message index and obtains message content from 
outgoing messages in the past blocks.   



 

High Performance Message Grouping 

The parallel transaction execution optimization addresses a fundamental bottleneck in 
blockchain transaction processing. The goal is to execute Na*Nm transactions in 
groups where Na is the number of unique accounts and Nm is sequential messages 
per account. 

The multi-range reading mechanism with separate readers for different ranges allows 
parallel execution of messages from subsequent blocks alongside those from previous 
blocks, while maintaining strict ordering guarantees per account. By reading more 
messages into buffers and then optimally filling groups from those buffers, the system 
avoids scenarios where overloaded accounts force execution of underfilled groups. 

Additionally, Tycho prevents large queues on single accounts from monopolizing 
execution capacity through a sophisticated partitioning system. When message count 
on account A1 exceeds limits, it's moved to isolated partition 1, where messages 
execute with lower priority but guaranteed minimal throughput. The routing 
mechanism using cumulative statistics and the <account_id, partition_id> mapping in 
diffs ensures deterministic assignment while preventing "bouncing" between partitions 
at threshold boundaries. 

Minimized Data to Validate 

The deterministic collation guarantee enables incredible efficiency - since DAG at 
mempool level guarantees external message ordering and message grouping is strictly 
deterministic, all consensus nodes produce identical blocks. As it was previously 
pointed out in the section about Collator validation only requires node public key and 
signature of block root cell hash. This eliminates the need to transmit actual blocks 
during validation, with signature exchange completing very quickly over the network. 

These architectural decisions represent a fundamental rethinking of blockchain 
collation that goes far beyond incremental optimizations - they're the core innovations 
that enable the performance gains over TON's approach. 

Layer-2 Scaling 

With regard to Tycho, detailed L2 plans are not currently finalized. At the moment 
rollups may be considered as the most effective and well tested way to introduce 
scaling in account-based blockchains. Whereas zero-knowledge proof schemes were 
considered more optimal for TVM design, they are not efficient and involve massive 
overhead costs for the VM. 

 



 

 

Figure 12. Cross-chain contracts facilitate bi-directional transfers 
between TON and a Tycho-based L2 chain 

Ongoing work focuses on implementing compatible chains that can efficiently interact 
with each other via dedicated contracts and intermediate light clients (see scheme on 
Figure 12. The light client serves as an oracle, providing block proofs for cross-chain 
contracts while validating structures and maintaining validator set transitions. 
Together, these components eliminate traditional bridge elements like relays or 
third-party signers, with security assumptions reduced to regular on-chain transfers 
with additional time-based limitations. The oracle provides only data and proofs 
without participating in consensus. Anyone can deploy the oracle service and use 
existing contracts, or manually submit blocks in case of oracle failure. 

Tycho-based chains are supposed to serve specific applications, such as 
Decentralized Exchange DEX protocols, which face ever-increasing demand for 
capacity in terms of gas, storage, and TPS. In this architecture, a single native base 
layer token becomes a L2 token via cross-chain contracts with 11 backing. For other 
tokens, compatible token standards are being developed to enable efficient bridging 
with low maintenance costs. 

Tycho-Based Protocols and TON 

The Tycho prototype inherited a high degree of compatibility with TON regarding basic 
concepts and architecture. In contemporary design, compatibility is not an end goal 
but rather a means for achieving better interoperability with TON nodes and the 
protocol in general. 

 

 



 

 

Figure 13. Tycho-TON Compatibility Assessment 

The visualization on Figure 13 represents common dimensions of comparison that 
serve as simplified indicators of the overall compatibility score. The most significant 
contributors to the high overall score are shared data structures and TON Virtual 
Machine integration. These foundational elements allow developers to build a cohesive 
ecosystem of smart contracts that are fully compatible with each other, serving as the 
basis for more advanced approaches to achieve complete interoperability. 

 

Furthermore, unification of the election system through the same opcodes and 
structures enables the construction of "trustless bridges," assuming that the trust 
model is no worse than that of the base layer of a single protocol. 

Tycho nodes feature a dedicated component designed to provide a seamless 
experience when switching between networks for end users. The TonCenter API 



 

delivers a TON node RPC API with TON-compatible data structures and responses that 
can be accessed by third-party applications without requiring any changes or 
incurring maintenance costs. 

 

Figure 14. Application-level compatibility 

 

 

 

 



 

Network 
QUIC Quick UDP Internet Connection) serves as a primary transport protocol for 
peer-to-peer communication between Tycho blockchain nodes in place of ADNL 
Abstract Data Network Layer) and RLDP Reliable Large Data Protocol) used as 
network communication protocols in TON. The network layer is built around an 
established library to provide reliable, multiplexed communication over UDP. In 
addition to that, If compared to TON ground up approach, Tycho networking layer 
focuses rather on direct peer-to-peer connections than on complex routing topologies 
and connection management handled by the underlying QUIC implementation. 
Besides, while ADNL is also built on UDP, QUIC has better deliverability assurances 
than ADNL and RLDP which runs on top of ADNL. 

Similarly to TON 31, section 3.2, Tycho uses a DHT Distributed Hash Table) for 
peer discovery (schematically represented by Figure 15. The implementation is a 
Kademlia-like system that provides both peer discovery and distributed data storage 
capabilities. Each peer has a 256-bit ID, and peers are organized using XOR distance 
metrics. The closer two peer IDs are in XOR distance, the more likely they are to know 
about each other. Both systems use Ed25519 cryptography for peer identity, but 
handle it differently. TON maintains both full and short node IDs with complex address 
list management and version tracking. Tycho uses a simpler PeerId wrapper around 
Ed25519 public keys, relying on TLS certificate verification for authentication. 

 

Figure 15. A schematic view of Tycho nodes interacting via QUIC with DHT 
based peer discovery. 

Beyond basic DHT discovery, Tycho supports two types of overlay networks that 
operate on top of the base DHT infrastructure. Public overlays are topic-based 
networks where peers automatically discover others who share interest in the same 



 

overlay topic - when a peer joins a public overlay (identified by a unique overlay ID, it 
periodically announces its participation in the DHT and actively searches for other 
peers who have announced participation in the same overlay, creating a 
self-organizing network of peers with shared interests. Private overlays, in contrast, 
are closed networks with explicitly managed membership lists where peer discovery is 
manual rather than automatic. In these kinds of overlays, peers maintain a predefined 
list of member peer IDs and use the DHT solely to resolve the current network 
addresses of these known members, ensuring that only authorized peers can 
participate while still leveraging the DHT's address resolution capabilities to handle 
dynamic IP addresses and network changes. 

 

 



 

Benchmarking 

Top-Level Performance Measurements 

The Tycho protocol is undergoing active development with a rapidly evolving 
codebase and currently lacks convenient tools for formal protocol auditing. For 
illustrative purposes, a public website displaying protocol statistics can be used as a 
trusted source of various performance metrics 32. Additionally, early adopters such 
as Hamsterchain have reported throughput levels reaching approximately 35,000 TPS 
in production environments, while internal testing demonstrates results up to 140,000 
TPS. 

The network can be thoroughly stress tested using a specialized toolkit composed of 
two complementary components designed to simulate realistic network load 
conditions. In this section, we provide a description of the main benchmarks and 
report them alongside publicly available data on other protocols. 

The data used in this analysis were drawn from official documentation, academic 
papers, and technical whitepapers of the respective protocols 5,9,12,15,17,19,20,21. 
The cited sources provide approximate values for transaction throughput TPS and 
finality latency under nominal or best-effort conditions. In case of reported multiple 
values, we adopted median or typical estimates to ensure consistency and collected 
them in Table 1, which served as the basis for the plot in Figure 16. 

Table 1. 
Reported Performance of DAG-Based Blockchain Protocols 

Protocol Throughput TPS Latency (s) 

IOTA 800 20 

Avalanche 4,500 2 

Hashgraph Hedera 10,000 4 

PHANTOM/GHOSTDAG 400 60 

BlockDAG 400 45 

Mysticeti 100,000 1 

Sui/Aptos Shoal++) 130,000 1.5 



 

The Tycho main benchmark setup consists of the primary utility, nekroddos 38, that 
serves as a load generator capable of creating diverse network stress patterns under 
varying scenarios, and the secondary tool that provides mass deployment of typical 
wallet contracts for enlarging chain state. Nekroddos supports multiple load 
generation modes, enabling developers and operators to simulate real-world 
conditions, such as high transaction volumes, burst traffic, and sustained loads. The 
tool interacts with pre-deployed smart contracts on the target network, ensuring 
authentic transaction patterns rather than synthetic test loads. 

 

Figure 16. Estimated Throughput vs Finality Latency for DAG-Based Protocols 

To support the nekroddos utility, a dedicated wallet deployer component manages the 
initial setup by deploying necessary smart contracts to the Tycho network. This tool 
automates contract installation and generates a comprehensive list of contract 
addresses that serve as input for the stress testing utility. It ensures a properly 
configured environment with all dependencies required for accurate, production-like 
testing. 

Reported results in tests conducted using both utilities demonstrated a peak 
performance of 140,000 TPS for external messages, with an average latency of 1.009 
seconds. These results are plotted alongside other DAG-based protocols in Figure 15.  

The protocol constantly improves and further research in developing reliable 
benchmarks for cross-protocol comparisons is needed. For example, a major factor 



 

behind the observed throughput growth up to 130,000 TPS is the size of the chain 
state, i.e. the total number of active accounts. While this factor is not taken into 
consideration in publications about competing DAG implementations, it plays a 
significant role in Tychoʼs performance profile. However, the only metrics that users do 
care about is simply throughput and settlement speed. Thus, while internal 
benchmarking may be considered a mission-critical feedback mechanism, on the top 
level only aggregated parameters help to deliver comprehensive inputs for making 
informed decisions. 

 

 

 

 

 

 

 



 

Conclusion 
DAG-based blockchain protocols represent a promising yet evolving design space that 
seeks to overcome performance and scalability limitations of sequential systems 
considered as legacy systems nowadays. In this paper, we outlined major design 
features of the newly proposed Tycho protocol. 

Tycho demonstrates excellent results in terms of throughput and latency, in line with 
what already existing protocols demonstrate in reports. Key challenges remain in 
balancing performance with decentralization, ensuring consistency under 
concurrency, and achieving robust finality in permissionless settings. While different 
Tycho-based protocols may expose different trade-offs, the underlying architecture 
remains highly compatible and expected to deliver superior interoperability with 
optional implementation of so-called “layer twoˮ protocols on top of base layer. 

Further research is required to formalize benchmarking practices, understand 
adversarial resilience, and evaluate the applicability of DAG-based models to 
general-purpose smart contract execution. Initial results demonstrate satisfactory 
throughput of the Tycho protocol, which is trending toward such high-performance, 
low-latency protocols as Aptos and Sui. 
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